3002-3(3)

S-FORTRAN LANGUAGE
REFERENCE GUIDE

MARCH 1980

Copyright © 1974, 1976, 1977 by Caine, Farber & Gordon, Inc.
All rights reserved.

1st
2nd
3rd
4th

edition:
edition:
edition:
edition:

October 1974
January 1976
May 1977
March 1980

TABLE OF CONTENTS

Introduction
Relation to Other FORTRAN Languages
Basic Language Elements
3.1 Definitions
3.2 S-FORTRAN Statements
S—-FORTRAN Comstructs
4.1 IF Construct
4.1.1 TF...ELSE...ENDIF
4.1.2 TIF,..ELSEIF...ELSE...ENDIF
4.2 BRepetitive DO Constructs
4.2.1 DO FOR...ENDDC FOR
4,.2.2 DO WHILE...ENDDO WHILE
4.2.3 DO UNTIL...ENDDO UNTIL
4.2.4 DO FOREVER...ENDDO FOREVER
4.3. Non Repetitive DO Constructs
4.3.1 DO...ENDDO
4.3.2 DO CASE Construct

4.3.2.1 DO CASE...CASE...ENDDO CASE

4.3.2.2 DO CASE SIGN OF...CASE.
4.3.3 DO LABEL...LABEL...ENDDO LABEL

4.4 Do Group Exits
4.4.1 TUNDO Statement
4.4.1.1 UNDO, Unconditiomnal

4.%.1.2 UNDO...IF, Conditional

4.4.2 CYCLE Statement

4.4.2.1 CYCLE, Unconditional
4.4.2.2 CYCLE...IF, Conditional

4.5 Procedures
4.5.1 PROCEDURE...END PROCEDURE
4.5.2 EXECUTE Statement
4.5.3 EXIT Statement

Index

. .ENDDO CASE

-]
i}
[¢]

[S NN R Y R

WOl W W W oW oM RN R RN ke ke ke b e e e
ES e Ch P W = o O B 00 B ® 0N NN

£
(=]

1. INTRODUCTION

The S-FORTRAN language developed by Caine, Farber & Gordon, Inc., is
a powerful extension of the FORTRAN language to allow easy, efficlent and
reliable structured programming in a FORTRAN environment.

The language results from the adjunction of a carefully chosen set of
control structures to existing FORTRAN. These extensicns encompass all
those that have been proposed in- the literature and shown to be useful and
safe in practice. These extensions are compatible with standard FORTRAN
a3 well as with currently existing extended FORTRAN.

The language is simple to learn. The syntax as well as the semantics
of the new control structures have been chosen to emphasize coherence and
regulafity. S-FORTRAN programs are easy to read and understand, accurately
and without ambiguity.

The language is simple to remember. 1In practice, this is an important
factor to guarantee that programs will never be misinterpreted. As a matter
of fact, you will probably find that after your initial reading of this
reference guide, you can read and write S-FORTRAN programs without having
to refer to this manual but rarely.

Although the language is simple to learn and remember, it is neverthe-
less quite powerful. Any program that you can now write in FORTRAN can
advantageouély be written in S~FORTRAN and yield a more readable, more
reliable, better documented program.

The S-FORTRAN language is implemented on a variety of machines using a
production S-FORTRAN to FORTRAN tramslator. The purpose of the tramslator
is to list the input programs autohatically indented, scan for possible errors
and print appropriate diagnostics, and produce equivalent FORTRAN programs
that can subsequently be compiled and executed.

The FORTRAN code produced by the translator is rarget compiler dependent
primarily to achieve efficiency. The translator output code generator is
sufficiently good to obviate the tendency of some programmers to write locally
tricky code in order to achieve some efficiency gain. S-FORTRAN programs can,
therefore, remain clear and readable without having to sacrifice object code

efficiency.

2. RELATION TO OTHER FORTRAN LANGUAGES

The syntax of S-FORTRAN cannot be fully defined without making reference
to an underlying FORTRAN language. Being an extension of FORTRAN, the
S~FORTRAN language can be considered an extension of ANSI standard FORTRAN
or an extension of some extended FORTRAN language as implemented by current
compilers. Thus, when we refer to a logical condition in an S-FORTRAN state-
ment, the syntax of the logical condition is defined not at the S5-FORTRAN
level but, rather, at the level of the underlying FORTRAN.

This implies that the user of S-FORTRAN is free to write compiler dependent
S-FORTRAN programs if he wishes to do so. Alternmatively, he may restrict
his programming to conform to standard FORTRAN and obtain portable S-FORTRAN

programs.

3. BASIC LANGUAGE ELEMENTS

3.1 Definitions

An S5-FORTRAN statement is made up of S~FORTRAN keywords used in conjunc-—
tion with constants, variables, and expressions.

A construct is composed of one or more statements which must appear in a
precise sequence. If a construct is composed of more than one statement, it

necessarily has an opening statement and a closing statement, each of which

contains the same characteristic keyword.

If the opening statement keyword is XXX, the closing statement is of
the form END XXX (for instance, IF...ENDIF, DOWHILE...ENDDO WHILE). Any
statement physically located between XXX and ENDXXX is said to be in the
scope of XXX.

Example:

IF (...)
ee. T T T 0T .\
IF (...)
‘en scope of scope of
inner IF >outer IF
ENDIF
ELSE
el p
ENDIF

A group of statements is said to be well formed if any construct it
contains is complete. Either this construct is a single statement or else

both its opening and closing statements are within the well formed group.

Examples of well formed groups are:

{ empty well formed group
X= 3,
{Y = SIN(X**2)
IF (...)
CALL OUTPUT (BUFFER, LENGTH)
ENDIF

Conversely, the following example:

(X = F(Y,L)
IF (...)
q IF (...)
Y = X#x2
| ENDIF

is not well formed because the first IF is not closed by an ENDIF.
Well formed groups will be dencted by SI’ 52’ 33, A
An S-FORTRAN label is written as a FORTRAN label except that its range

is restricted to satisfy
1 < Tabel < 49999

Logical condition designates a condition acceptable in a logical IF in

the associated FORTRAN language.

Similarly arithmetic expression designates an expression acceptable in

an arithmetic IF in the associated FORTRAN language.

3.2 S-FORTRAN Statements

Source programs consist of FORTRAN and S-FORTRAN statements, freely
intermixed. S-FORTRAN statements are composed of keywords used in conjunc-
tion with constants, variables, and expressions. FKeywords are mot reserved
words.

S-FORTRAN statements are written one to a card within columns 7 through
72. As in FORTRAN, if a statement is too long it can be continued on up to
19 continuation cards which must have neither a blank nor a zero in column 6.
For the first card of a statement, columm & must be either blank or zero.

As in FORTRAN, blanks are not significant and can be used freely to improve

clarity if necessary. For instance

ENDIF
END IF
END 1I1IF

are equivalent ways of writing the ENDIF keyword.
A numeric label may be placed in column 1 through 5 of the first card of
a statement. Blanks and leading zeros are ignored. An S-FORTRAN Zabel must

be in the range
1 < Igbel < 49999

if the program unit (program or subprogram) contains at least one S~FORTRAN
construct.

Columns 73 through 80 can be used for any purpose since they are simply
listed by the translator.

Comments to explain the program are indicated by the letter C in celumm 1.
Comments may appear anywhere, including immediately before a continuation

card.

4. S-FORTRAN CONSTRUCTS

In this section, we define the syntax and explain the operation of each
S5~-FORTRAN construct. Every example listed forms a well formed group and could

2’ 53,-11
cutive S-FORTRAN statements are written without any intervening Si group

be used in place of 51, s in any example. Notice that if two conse-
or "...", then no S-FORTRAN or FORTRAN statement except possible comments

can appear in between. For instance

IF (logieal condition 1)

51

ENDIF
or

IF (logical condition 1)

ENDIF

means that between an IF and its associated ENDIF statement, any well formed
group of statements may appear, including a null group.

However

DO CASE unsubseripted integer variable
case c¢ase specification 1

+ .

implies that no statement except possibly some comment statements may appear

between DO CASE and its first CASE statement.

4.1 1IF Construct

4.1.1 TIF...ELSE...ENDIF

The simplest form of the IF construct 1s

IF (logical eondition 1)

5

ENDIF

where logical condition 1 is a FORTRAN logical condition acceptable in
a logical IF, and 31 is any well formed group of statements. SI is
executed if Zogical condition 1 has the value .TRUE., otherwise it is
bypassed.

A single ELSE statement can be added to specify that 32 should
be executed if logical condition 1 is found to be equal to .FALSE..

The IF construct is then written as

IF (logical condition 1)

ENDIF

As before, SI and 82 can be any well formed groups of statements.
Obviously, Sl could be 2 null well formed group as in

IF (logical condition 1)

ELSE

S,

ENDIF

however, it is better in this case to write

IF (.NOT. (logical condition 1))

Sy

ENDIF

and optionally to negate the logical condition 1 if this improves read-
ability.

Since the two forms of the IF construct are well formwed groups,
SI and/or 32
IF...ELSE...ENDIF. For instance, we may write:

may also contain some instances of IF...ENDIF or

IF (logical condition 1)
IF (logical eondition 2)

Sz

ENDIF
ELSE
I¥ (logiecal condition 3)

ENDIF
ENDIF

This "nesting' property can be carried out to any depth level since

33’ 34 and S5 are also well formed groups.

4.1.2 TIF...ELSEIF...ELSE...ENDIF

The complete form of the IF construct may include one or more
ELSEIF statements that must appear before the ELSE statement, if one
exists. The purpose of ELSEIF is to avoid deep indentation levels when

many IF's would have to be nested. For instance

IF (logical comdition 1)

54

ELSEIF (logical eondition 2)
52
ELSEIF (logical condition 3)

ENDIF

where SI’ 32, SS’ 84 are well formed groups of statements, is strictly

equivalent to

IF (logical condition 1)

54

ELSE
IF (logieal condition 2)

5o

ELSE
IF (logical condition 3)

-1Q0-

Thus, the IF...ELSEIF...ELSEIF...ELSE...ENDIF construct corresponds

to the often occurring pattern of a sequential sieve. Each test is carried

out in turn. As soon as one succeeds, its associated well formed group

is executed and we proceed with the first statement following ENDIF.

If the sequential tests all fail and there is an ELSE statement, the well

formed group associated with ELSE is executed.

Example:

.30
3t
32
33
34
35
36
ar
a8
39
40
&1

el LN RSN LR VR
%

IF (CHAR +NE, BLANK)

IF (CHAR .EQe L PAREN)
LEVEL = LEVEL + 1

ELSEIF {CHAR .EQ. R PAREN)
LEVEL = LEVEL - 1
IF (LEVEL oLTa O}

CALL ERROR (LEVEL)

ENDIF

ELSE
LENGTH = LENGTH + 1.

ENOIF

 ENDIF

‘E--'* indicates an S-FORTRAN statement

nesting level

Line number

- 11 -
Rev. 19 MAR 80

4.2 Repetitive DO Constructs

There are four constructs which define and control the execution of
loops in S-FORTRAN. Each repetitive DO comstruct comprises both an open-

ing and a closing statement that define the scope of the locp.

4.2.1. DO FOR...EWNDDO FOR

This construct is the structured equivalent of the FORTRAN DO

loop. It is written as

DO FOR I = Il’ I2
5
END DO FOR
or
DO FOR I = II’ Iz, I3
%1
END DO FOR
I, II’ IZ’ IS’ follow the rules imposed by the target FORTRAN

compiler. However, even if not necessary in FORTRAN, the follow—

ing restrictions must be observed or the results are unpredictable:

1. The index variable, I, must be of type INTEGER.

2. The termination and increment expressiocns, 12 and Ig’
not be caused to change within the loop or its extended

mist

range.

As in FORTRAN, the well formed group 5, is always executed at least

-7
once. Therefore, appropriate tests may be necessary to bypass the

loop if Il’ I2, I, are incompatible.

3

43 C C BUILD DIAGONAL MATRIX
44 * IF (N «GT. 0}
45 1 = 100 FOR 1 = 1, N

] *
48 2 * i 1DCFOR J = 1, N
47 3= | IF (1 «EQe J)
48 o I 1 Alf+d) = L
49 3= i | ELSE
50 & (I | Allsd) = 0
51 3 i | ENDIF
52 2 1 {ENDDG FOR

| e
53 1= JENODD FOR

54 * ENDIF

-12-

4.2.2 DO WHILE...ENDDO WHILE

DC WHILE together with ENDDO WHILE is used to specify that a group
of statements must be repetitively executed as long as the associated

logical condition remains equal to .TRUE.. The well formed group of

statements is not executed at all if the logical condition is false upon

reaching the DO WHILE statement. Whenever an iteration terminates by

reaching the END DO WHILE statement, the Zogical condition is evaluated

again., If it still yields a value .TRUE., a new iteration is started.

Otherwise, the first statement following END DO WHILE is given control.
The format is

DO WHILE (logical condition)

5,

END DO WHILE

and the execution flow chart of the DO WHILE construct is:

-13-

Example:
56 ¢ c BUILD OIAGONAL MATRIX
58 1 =0 :
55 * 100 WHILE (1 oLTe NJ
80 1 I 1a1+1
61 1 } 4 =0
62 1 * | 100 WHILE (J «LTe N)
63 2 it | Jd=J+1
b6 2 ® 1 | IF {1 +EQe J4)
85 3 (I Alledd = 1
86 2 = 1 | ELSE
&7 1 [A(L,d) = 0
68 2 1 | ENDIF
5 1 = | IENODO WHILE
|+
70 . JENDDO WHILE

14~

4.2.3 DO UNTIL...ENDDQ UNTIL

DO UNTIL together with ENDDO UNTIL is used to specify that a
group of statements must be repetitively executed as long as a given
logical eondition is still .FALSE.. Notice that contrary to the DO WHILE

construct, the well formed group of statements is always executed at

least once before the condition is first evaluated. Thus, DO UNTIL
should be read as DO AT LEAST ONCE UNTIL the logical condition becomes
true. If the logical condition is equal to .FALSE., a new iteration is
started and so forth until Ilogical condition finally becomes equal to

.TRUE., at which point control is passed to the first statement following
END DO UNTIL. '

The format is

DO UNTIL (Ilogical condition)

5y

END DO UNTIL

and the execution flow chart of the DO UNTIL construct is

-15-

Example:
72 c ' c BUILD DIAGONAL MATRIX
73 [=1
74 » 100 UNTIL (I oGTe N)
751 | e =1
I +
T4 L * 1 100 UNTIL (J +GTa N}
7T 2= o IF (1 «EQe J)
78 3 Allsdd) =}
79 2 i) ELSE
80 3 i Allsd) = 0
g1 2z = I | ENDIF
az 2 I 1 Jd=Jd+1
83 L * | |ENDDO UNTIL
1 *
84 1 { [=1+1
. 85 » 1END DO uUNTIL

-16-

4.2.4 DO FOREVER...END DO FOREVER

This construct is used to set up an unconditional lcop. It is

written as

DO FOREVER

54

ENDDO FOREVER
and is strictly equivalent to

DO WHILE (.TRUE.)

54

END DO WHILE

However, the advantage of using a DO FOREVER...ENDDO FOREVER is to draw
the attention of the reader to the fact that the loop is potentially
an infinite loop. Therefore, precautions must be taken to terminate or

exit from the loop at some point. The well formed group S, must contain

1
one or more statements that will cause either directly or indirectly
a return, stop, or some form of exit from the SI group. Exit from DO

groups will be explained later in section 4.4.

Example:
ga » IF (OPTION +EQe RD IN)
89 1 » {DO FOREVER
90 2 | READLIN UNIT, 500} CODEs TEXT
91 2 = } 1F ICODE +EQe O)
9z 3] PRINT 6du
93 3 i sTOP
#
94 3 &00 | FORMAT(25H LAST CARD FOuUNDs STOP OK)
95 2 = i ELSE ,
9% 3 I CALL BUILD (CODE, TEXT)
97 2 * | ENDIF
98 1 * | ENDDQ FOREVER
99 » ELSE
10 1 CALL PRCS

. 101 b ENDIF

=-17-

4.3 Non-Repetitive DO Constructs

The next four constructs are called non-repetitive DO constructs because
they are DO groups but not loops. They all comprise an opening and a closing

statement.

4.3.1 DO...END DO

This construct is used to bracket a well formed group of statements.

It 18 written as

o

%1

END DO

and has no effect by itself. However, the'purpose of this construct
will become clear in section 4.4 when exit mechanisms applicable to DO

groups are discussed.

-18-

4.3.2 DO CASE construct

This construct is used to execute selectively one among several
well formed groups of statements depending upon either the value of an

unsubsceripted integer variable or the sign of an arithmetic expression.

4.3.2.1 DO CASE...CASE...END DO CASE

This first form of the DO CASE construct is used to execute
selectively one among several well formed groups of statements
depending upon the value of an unsubscripted integer variable.

Its format is

DO CASE unsubscripted integer variable
CASE case specification 1

5y

CASE case specification n

Sn

END DO CASE

Each CASE statement contains a case specification which definés
one or more integer values. For the associated well formed groups
§; to be executed, the CASE variable unsubscripted integer variable
must have a value equal to one of the values defined in case
specification 1. In particular, if unsubseripted integer variable
happens to have a value which is not associated with any of the
CASE statements, the whole DO CASE...ENDDO CASE group is bypassed.
- There are three ways of associating integer wvalues with a

particular well formed group of statements.

-19-

by specifying the integer constant explicitly, for instance

CASE 2

or if there are several such values, by adding commas
to separate the signed or unsigned integer constants,

for instance
CASE ~1,3,+4

by specifying the set of integers less than or greater

than a signed or unsigned integer constnat, for instance
CASE .LT.-10

or
CASE .GT. 2048

or
CASE 0, .LT.-10, .GT. 10

{notice that '.LT.' and '.GT.' can be written '<' and '>'

respectively when these characters are available).

by specifying the set of integers not contained in any

of the type a or b specifications. This is written
CASE OTHER

and is interpreted as any integer value not otherwise
gpecified in any of the CASE statements associated with
this particular DO CASE construct.

_20-

Examples of correct case specifieations are

CASE 2

CASE -1, 3, 4

CASE .LT. -10, .GT.+10, -2, +2
CASE OTHER

whereas the following case specifications are illegal

CASE 2.0
CASE K

Let us now consider a complete example of a DO CASE

construct including several CASE statements

119 * JDO CASE 12
120 1= i CASE }: 3
121 2 I CALL PGA
122 1 * | GASE 244
123 2] CALL PGBILIZ)
124 1= | CASE o+iTel
125 2 i PRINT 610
126 2 i sTOP
‘—- el
127 1 =*» | CASE +GTs 4
128 2 | IF 1F(12) +LTa WIDTH)
129 3 } FII2) = FL12) * COEFF
130 2 » i ENDIF
131 2 H RETURN
<—“——.-----
13z - JEND DO CASE

+

It is interpreted as:

. if 12
if 12

1l or I2 = 3, call the subroutine PGA
2 or 12 = 4, call the subroutine PGB

. if I2 < 1, print a message and stop
. 1f I2 > 4, execute the IF test and RETURN

-21-

It is important to notice that contrary to the
IF...ELSEIF...ELSE...ENDIF construct where the order of
the IF and ELSEIF statements is important, the order
of the CASE groups is not. The above example could just

as well have been written:

104 - 1D0 CASE 12
105 1 | CASE WLTel
106 2 i PRINT 610
107 2 i sTOP
' - - —
108 1= I CASE 1, 3
109 2 | CALL PGaA
110 1 # | CASE 2,4
1r 2 I CALL PGEII2)
112 1 * 1 CASE oGTe .4
113 2 = I IF (F{I2} «&T. WIOTH)
114 3 | FII2) = F{I2} * COEFF
115 2 ») ENDIF ,
116 2 } RETURN
(By T
117

B

|END DO CASE

+* -

The case specifications associated with all the CASE
statements that are part of a DO CASE group are not
indébendent. They must satisfy jointly the constraint

that any integer value is specified at most once, either
explicitly or implicitly. Thus, any two case specifications
belonging to the same DO CASE construct must have a null

intersection. For instance:

135 * iDQ CASE I

136 1 = i CASE Le3.7
137 2 | 51

138 1 = I CASE 3.4
139 2 | 52

140 * | ENDDO CASE

w+% ERROR *#% DUPLICATE CASE SPECIFICATION IGNGRED
Wil i e e Yraing

-22-

is illegal because the same integer value 3 appearé

in two distinct CASE statements.

142 * {00 CASE INOEX

143 1=] CASE +LT. 5

144 2 i CALL FF(1, INDEX)
145 1= i CASE +LTe 1

whk ERROR %3 DUPLICATE CASE +LT. IGNORED

Lt o R T
146 2 | INDEX =)
147 - 1 ENDDG CASE

+

is illegal because two '.LT.' clauses are used on two
CASE statements that belong to the same DO CASE construct.
Their intersection is the set of integers less than or
equal to 1 which is illegal since any two case specifications
must always have an empty intersection.

Therefore, in order to write legal DO CASE constructs,

the feollowing rules should be observed:

. at most one '.LT.' clause, one '.GT.' clause and
one 'OTHER' can appear in the CASE statements
of a given DO CASE construct

. any integer value specified explicitly in a CASE
statement must be distinct from any other value
specified in the same or any other CASE state-
ment belonging to the same DO CASE comstruct

. If the clause

LT. n

is used, the integer n must be less than or equal
to any integer appearing in any of the CASE

statements of the same DO CASE construct

. If the clause

.GT. n

is used, the integer n must be greater than or
equal to any integer appearing in any of the
CASE statements of the same DO CASE construct.

-24—

4.3.2.2 DO CASE SIGN OF...CASE...END DO CASE

This second form of the DO CASE construct is used to execute
selectively one of exactly three well formed groups depending
upon whether the value of an aritimetic expression is positive,

negative or equal to 0. It is written as:

DO CASE SIGN OF (arithmetic expression)
CASE .LT. 0O

CASE .GT. O

%3

ENDDO CASE

where arithmetic expression is an arithmetic expression of any

type except complex and SI’ 52, 33 are well formed groups of

statements. Sl will be executed when arithmetic expression is
strictly negative, 52 when it is exactly equal to 0 and 33 when
it is strictly positive. When the characters exist, '.LT.' can
also be written as '<' and '.GT.' as '>',

The order in which the three CASE statements appear is

immaterial. The example above could also have been written:

DO CASE SIGN OF (arithmetic expression)
CASE O

CASE .LT. -0

CASE .GT. O

Sz

ENDDO CASE

-25=

In some instances, Sl’ Sy, 53 may be null. Nevertheless,

the corresponding CASE statement must be present. For example:

Example:

149
151

152
153
154
155
156
157
158
159

161
162
163
Y.L
165
166
167
168

MNNNRMNENMNMMNAN NSNS -

DO CASE SIGN OF (arithmetic expreasion)}

CASE 0

c QUADRATIC EQUATION SOLVER
DISCR = B%%2 ~ 4.¥A%(
10D CASE 3IGN OF (DISCR)
i CASE oLTe ©
I ROOTL R = ~8/(2.%A)
| ROQTL 1 = SQRT{-OISCR) / (2.%A)
| RCOTZ R = AQQTL R
i ADOT2Z I = - ROOQTL [
| CASE O
| ROOTL R = =B /7 (2.%4A)
l ROOTL 1 = O
| RCOTZ R = ROOTL R
i ROGT2Z I = 0. .
1 CASE +GT. 0
i ROOTL R = (=B+SQRTIDISCRI} / (2.%A)
‘ ROOTL I = O
§ ROOT2 R = {~8-SQRT{DISCRI) / (2.%A)
: ROOT2 I = Qe .

ENDOQ CASE

-26-

4.3.3 DO LABEL...LABEL...END DO LABEL

Although not part of ANSI standard FORTRAN, abnormal returns from
SUBROUTINE and FUNCTION calls as well as END and ERR exits in READ
and WRITE statements are widely used in extended FORTRAN languages.
The DC LABEL...LABEL...ENDDO LABEL comstruct is available in S-FORTRAN
to handle these abnormal cases.

The DO LABEL comstruct has the general form:

statement ... labell ... labell ... labeld ...

DO LABEL
LABEL label 1, label 2, ...
57
LABEL Zabel 3, ...
Sy

END DO LABEL

A DO LABEL group should immediately follow each statement containing
the abnormal labels. Each label ¢ designates an S-FORTRAN label and,
optionally, one label 1 in any DO LABEL group can be replaced by the
character *,

The interpretation of the DO LABEL group is as follows:

. if executing the abnormal statement causes a return via one
of the abnormal labels, the well formed group associated
with the abnormal label is executed and control then
proceeds with the first executable statement following
ENDDO LABEL '

. if on the contrary, the abnormal statement returns normally,
control transfers to the next statement in sequence, i.e.

DO LABEL. At that point, if the DO LABEL group contains

-27-

a "LABEL *' statement, the associated well formed group is

executed and control then proceeds with the first executable

statement following END DO LABEL. If no 'LABEL *' statement

is specified as part of the DO LABEL group, the DO LABEL

group is completely bypassed. .
Example:

170 READ (5, 500, END = 100, ERR = 200) CARD

171 * 100 LABEL

172 1 I LABEL 100

173 2 [PRINT 650

- 174 2] EQF = oTRUE.

175 1 » | LABEL 200C.

174 2] PRINT 651

177 2 } CaLL DIE

‘178 2 i sTO0P
e e e

179 * | ENDDO LABEL_

T

In this example; PRINT 650... is executed if an end of file is
found on logical unit S. If an I/O error condition is detected, PRINT
651... is executed. If the read operation terminates normally, the
DO LABEL group is simply bypassed.

Clearly, in a given program or subprogram, all labels appearing
in LABEL statements must be distinet. It is alsc in order at this
point to warn against an indiscriminate use of the DO LABEL construct

which might seriously jeopardize program clarity.

-28-

4.4 DO Groups Exit Constructs

When writing structured code, it is sometimes necessary to exit pre-
maturely from a DO group, repetitive or not. Although such a premature
exit can be achieved by appropriately setting and testing logical switch

variables, more readable programs are usually obtained using the UNDO and
CYCLE statement.

4.4.1 UNDO statement

The UNDO statement is used to exit prematurely from a DO group,
repetitive or not. It causes a transfer to the first statement imme-

diately following the closing statement of the DO group to which it is
applied. ’

4.4.1.1 TUNDO, unconditional

The simplest form of the UNDQ statement is written
UNDO

When this statement is encountered, the innermost DO group,
repetitive (DO FOR, DO WHILE, DO UNTIL, DO FOREVER) or not
{DO, DO CASE, DO CASE SIGN OF, DO LABEL) in which UNDO is
nested is terminated and control proceeds with the first

executable statement following the terminated DO group.

Example:
192 * |00 FOREVER
183 1 i sl
184 1 * l IF (EQF}
185 2% | uNoo
<
186 1 * | ENDIF
187 1 | 52
ig8 * {ENRDO FOREVER

189 s$3

-39~

In this example, the infinite loop is terminated when UNDO is
encountered. WNotice that the S-FORTRAN processor places an arrow
after the UNDO statement to stress the semantic action, namely
that the loop is left at this point. Control proceeds with the
first exequtable statement of 83.

It sometimes becomes necessary to exit not from the innermost
DO group but from an outer DO group. The UNDO statement is then

written
UNDO label
wvhere label is an S—~FORTRAN label which must have appeared as the

opening statement label of a repetitive or non repetitive DO construct

whose scope includes the UNDO statement.

Example:
191 * 10 {00 FOR 1 = 1¢ N
192 1 } sl
193 1L = 20 | 100 WHILE {T «GTa 04l
194 2 i e
195 2 [UNDO 10
(-
196 2 I i sas
197 2% (| UNDQ
] f=———
198 2 i H sse
199 2. LI | UNDOQ 20
I ===
200 2 | i ses
201 1= | |ENDGG wHILE
1 *
202 1 | 52
203 L] |ENDDO FOR

204 83

-30-

4.4.1.2 UNDO...IF, conditional

As a notational convenience, the 5-FORTRAN language allows
either form of the UNDO statement to be made conditional by
appending a logical test. The UNDO statement can, therefore, be

written:
UNDO IF (logieal condition)
or
UNDO label IF (logical condition)
These conditional UNDO statements are strictly equivalent to
IF (logical condition)

UNDO
ENDIF

or
IF (logical condition)
UNDO label
ENDIF
respectively.

Example: The first UNDO example shown in page 28 could

also have been written:

206 * | DO FOREVER

207 1 t 51

208 1 i UNDQ 1F {EOF)
&

209 1 i §2

210 * LEND DO FOREVER

211 53

-31-

4.4.2 CYCLE statement

The CYCLE statement is used to skip any statements remaining to
be executed in the current cycle of a repetitive DO group (DO FOR,
DO WHILE, DO UNTIL, DO FOREVER). When a CYCLE statement is encountered,
control proceeds to the closing statement END DO... of the designated
repetitive DO group. Any subsequent actions take place as if the closing
statement END DO.... .had been normally encountered as the next statement

to be executed.

4.4.2.1 CYCLE, unconditional

The CYCLE statement is used to skip any statements remaining
to be executed in the current cycle of a repetitive DO group

(DO FOR, DO WHILE, DO UNTIL or DO FOREVER). Its format is

CYCLE

or

CYCLE label

The first form of the CYCLE statement is used to unconditionally
transfer to the closing statement ENDDO... of the innermost DO
group in which the CYCLE statement is located. It is an error to
try applying CYCLE to a non repetitive DO group.

The second form is used when the target DO group is not the
innermost one but one of the outer DO groups. The label must be -
an S-FORTRAN label associated with the opening statement DO...

of a repetitive DO construct whose scope includes the CYCLE state- -

ment. If such a label does not exist or is associated with a
non repetitive DO group, an error occurs. 1f label happens to be
associated with the innermost repetitive DO group whose scope

includes CYCLE, then the two forms of the CYCLE statement are equivalent.

=32~

Examples:

213 * 30 100 UNTIL (1 «GTe M)

214 1 : -51

215 1 * 40 | |00 FOREVER

216 2 1 1 52

217 2% 1 IF [X{I) oLTe Do}
i | +

218 3 I 1 joo

219 4 [l ese

220 4 » i I CYCLE
1 j==m

% ERROR »9% CYCLE STATEMENT APPLIED TO A MON-REPETITIVE DO GROUP; IGNOREC
pad bbb o2 L L]

221 4 (I 1 .se

222 LI i | CYCLE 30
| (=

223 4 i | | ecse

224 31 i 1ENDDD
i *

223 2 * [ELSE

226 3 1 | ™

227 3 * b CYCLE
g

228 3 [sea

229 3 = [CYCLE 40
I i<

23C 3 [| sas

231 z» N ENGEF

232 2 i | §3

233 1 * 1 1ENDDQ FOREVER

. i +*
234 1) I = [+1
235 » | ENDDOUNTIL

=33~

4.4.2.2 CYCLE...IF, conditional

-As a notational convenience, either form of the CYCLE state-
ment can also include a Zogical condition. In that case, CYCLE
is written

CYCLE IF (logical econdition)
or

CYCLE label 1IF (logical condition)
These conditional CYCLE statements are strictly equivalent to

IF (logical condition)

CYCLE

END IF
or

IF (logical eondition) .

' CYCLE label

END IF

respectively.

7

4.5 Procedures

A very powerful mechanism of the S-FORTRAN language is the ability to
define and execute procedures. A procedure is simply a well formed group
of statements with a descriptive name attached to it. A procedure can be
remotely executed from one or several places within the same program or sub-
program by simply referencing its name. This allows ome to write modular
programs and develop them top down.

It is important to understand the differences between a subprogram and a
procedure. A subprogram is an independently compiled unit, wiﬁh an optional
list of arguments and its own data space. On the contrary, procedures are not
independently compiled but reside within the program or subprogram that
references them. Procedures are not passed arguments and clearly share the
same data space as the program or subprogram in which they reside.

In practice, procedures are used not in place of subprograms but whenever
creating a subprogram just to enhance modularity seems like too much trouble.
Procedures have the advantage of a very low overhead both from the standpoint

of core occupation and execution time.

~35=

4.5.1 PROCEDURE...END PROCEDURE

A procedure is defined as

PROCEDURE (procedure name)

53

END PROCEDURE

Optionally, procedure name may be repeated on the END PROCEDURE state-

ment as follows
END PROCEDURE (procedure name)

The name procedure name is a string of alphanumeric characters (A
through Z, 0 through 9), the first onme of which must be alphabetic.

The length of procedure name must be at least 1 and at most 31 non blank
characters. Any leading, trailing and embedded blanks are ignored.

In other words, a procedure name is built like a standard FORTRAN
identifier except that its length can go up to 31. Example of valid

procedure names are:

PROCEDURE (INVERT MATRIX 1)
or equivalently
_PROCEDURE (INVERTMATRIX1)

PROCEDURE (P2) -
PROCEDURE (COMPUTE TRAJECTORY CORRECTION)

whereas the following procedure names are illegal:

PROCEDURE ()
is illegal since procedure name must contain at

least one non blank character

36—

PROCEDURE (EVALUATE A + B)
is illegal since '+' is not alphanumeric

PROCEDURE (2)
is illegal since the first character must be
alphabetic

PROCEDURE (NEW VERSION OF THE DIFFERENTIAL EQUATION SOLVER)
is illegal because the name contains 41 non blank
characters which is larger than the maximum permitted

length 31.

Each program or subprogram may contain any number of procedures. How-
ever, all procedures within a given program or subprogram must appear
after every executable statement of the program body (i.e. the part of
the program or subprogram that is not in any procedure). The only
statements that can appear after the last END PROCEDURE statement are
the END statement and some coptional FORMAT statements.

A procedure may not contain another procedure or a portion of

another procedure. Thus, the scope of each procedure must be totally

disjoint from the scope of any other procedure.

A typical program layout might be the following:

SUBROUTINE X(L,M)

RETURN

PROCEDURE (ENCODE CARD)

program 51 1st procedure

END PROCEDURE

PROCEDURE (DECODE CARD)

SZ 2nd procedure

END PROCEDURE

=37-

4.5.2 EXECUTE statement

Statements contalned within a procedure can only be executed by
means of an EXECUTE statement. A procedure cannot be fallen into and

executed. It must be invoked by a statement of the form
EXECUTE PROCEDURE (procedure name)

or in short
EXECUTE {procedure name)

When a subprogram is entered as a result of a CALL staiement,
any procedures it contains are considered to be inactive.

When a procedure is invoked by an EXECUTE statement, control
transfers to the first executable statement following the PROCEDURE
statement. The procedure is then said to be active.

The procedure remains active until the END PROCEDURE statement is
encountered. At that point, control transfers to the first executable
gtatement immediately following the invoking EXECUTE statement and the
procedure now becomes inactive again.

A procedure should never reference itself either directly or
indirectly. Thus, an EXECUTE statement should never be applied to a
procedure which is currently active or an dnfinite loop may result.

Notice that a procedure may contain RETURN or STOP statements.

If a RETURN statement is encountered, a return from the subprogram is .

performed and all procedures contained in the subprogram become inactive.

-38-

c O 0 0 0 0 06 06 0 0 0 00 0 0 0 0 0 O

CFG,» INC. S=FORTRAN TRANSLATOR VERSION 1.3 ROCARD

LINE NST
NUM LVL S INPUT S~FORTRAN STATEMENT
682 SUBROUTINE KO CARD(CARD, SWITCH)
683 INTEGER CARD(20)
624 LOGICAL SWITCH
685 sea
686 " IF LSWITCH)
687 1 = EXECUTE {(READ & CARD)
6088 * ELSE
689 1 * ' EXECUTE (ABORT TASK)
690 - ENDIF
691 wen
632 RETURN
L
CFG, INCa S-FORTRAN TRANSLATOR VERSIUN la3
o LINE ST
o NUM LVYL S INPUT S-FORTRAN STATEMENT
694 * PROCEDURE [READ A CARDI}
695 1 LE X J
Q 696 1 READ {(INPUT, 50U, ERR = lUQ) CARD
697 L * |00 LABEL
qQ 698 2 * | LABEL 190
599 3 | EXECUTE (ABQRT TASK)
700 1= - |ENDGO LABEL
() * - —— ————
70t 1 . “en
702 * END PROCEDURE
o
CFGy INC, 5-FORTRAN TRANSLATOR VERSICN 1.
° o
LINE NST
(o) o NUM LVL S INPUT S~FORTRAN STATEMENT
704 = PROCEDURE (ABURT TASK}
(o] 705 1 sae :
o] T06 * END PROCEDURE
707 c ¢
o 708 Sou FORMAT (2014)
(=) ™9 END
o ~

-39-

4.5.3 EXIT statement

The execution of a procedure terminates when its END PROCEDURE
statement is encountered. However, the execution of a procedure can be

terminated prematurely using the EXIT statement. Its format is

EXIT

or

EXIT PROCEDURE
or

EXIT (procedure name)
or

EXIT PROCEDURE (procedure name)

EXIT always applies to the procedure in which it is located.

An EXIT statement outside the scope of a procedure is illegal.
When procedure name is present, the name must match that of the enclosing
procedure.

Example:

267 T PROCEDURE {SEARCH FOR NEGATIVE) .

268 1 ses -

269 1 * |00 FOR I = L, M

210 2 » ! IF AX(I} elLTe 0o} -

2711 31 = i EXLT .
< ————— -

212 2 » i ENDIF

273 1 = |ENDOG FOR

274 1 CALL ERROR

215 - END PROCEDURE

~40-

INDEX

active procedure 37
arithmetic expresaion 4

“blanks 5

card format 6

CASE 18

CASE specification in DO CASE 18
CASE specification in DO CASE SIGN OF
closing statement 3

comments 5

Compiler dependent 2

Conditional CYCLE 33

Conditional UNDO 30

construct 3, 6

continuation cards 5

CYCLE 31

CYCLE IF 33

CYCLE label 31

CYCLE label IF 33

DO 17
DO AT LEAST ONCE UNTIL 14
DO CASE 18

DO CASE, example 20, 21, 22
DO CASE SIGN OF 24

DO CASE SIGN OF, example 27
DO FOR 11

DO FOREVER 16

DO LABEL 26

DO LABEL, example 27

DO, non repetitive 17

DO, repetitive 11

DO UNTIL 14

DO WHILE 12

ELSE 7

ELSEIF 9

empty well formed group 4
END DO . 17

END DO CASE 18, 24

END DO FOR 11

END DO FOREVER 16

END DO LABEL 26

END DO UNTIL 14

END DO WHILE 12

24

-41-

ENDIF 7

END PROCEDURE 35

EXECUTE 37

EXECUTE PROCEDURE 37
executing a procedure 37
EXIT 39

exit from a DO group 28
exit from a procedure 39
EXIT PROCEDURE 39

exits 28, 39

.GT. in CASE specification of DO CASE 19
.GT. in CASE specification of DO CASE SIGN OF

IF construct 7
IF example 10
inactive procedure 37

keyword 3, 3

label 4, 5
LABEL 26
LABEL * 26

label range 4, 5

logical condition 4

loop exit 28

.LT. in CASE specification of DO CASE 19
.LT. in CASE specification of DO CASE SIGN OF

machine dependent programming 2
machine independent programming 2

nested procedures, illegal 26
non repetitive DO group 17

opening statement = 3
OTHER in CASE specification of DO CASE 19

portable programming 2
procedure 34

PROCEDURE 35,

procedure, location of 36
procedure name, definition 37
procedure name, reference 37, 39

range of a label 4, 5
repetitive DO group 11
reserved word 5

24

24

[

XY

. ¥

-42-

S 1585155,

scope 3

scope of procedure 36
sequential sieve 10
statement 3

translator 1

Unconditional CYCLE 31

unconditional loop 16

Unconditional UNDO 28

unsubsoripted integer variable, in DO CASE
UNDO 28

UNDO IF 30

UNDO Zabel 29

UNDO Zabel IF 30

well formed group 3, 4

18

