the tool for software designers

PDL/81

Format Designers
Reference Guide

(Version 2.0)

Caine, Farber & Gordon, Inc. Warren Point International Ltd.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the software described herein is governed by
the terms of a license agreement or, in the absence of an agreement, is subject to
restrictions stated in subparagraph (c)(1) of the Commercial Computer Software
— Restricted Rights clause at FAR 52.227-19 or subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013,
as applicable. [Caine, Farber & Gordon, Inc.; 1010 East Union St.; Pasadena, CA

91106]

Comments or questions relating to this manual or to the subject software are welcomed
and should be addressed to:

In North America: In the Rest of the World:
Caine, Farber & Gordon, Inc. Warren Point International Ltd.
1010 East Union Street Babbage Road
Pasadena, CA 91106 Stevenage, Herts SG1 2EQ
USA England
Tel: (800) 424-3070 or Tel: 0438 316311

(818) 449-3070
Fax: (818) 440-1742 Fax: 0227 86521

Form Number: 9102-1

1 August 1988
1 December 1991

Copyright [1 1981, 1985, 1988, 1991 by Caine, Farber & Gordon, Inc. All Rights Reserved.

PDL/74, PDL/81, PDL/91, and the PDL prefix are trademarks of Caine, Farber & Gordon,
Inc. UNIX is a registered trademark of UNIX System Laboratories. PostScript is a regis-
tered trademark of Adobe Systems Incorporated. Ada is a registered trademark of the U.
S. Governmenment (Ada Joint Program Office). VAX, VMS, and ULTRIX are trademarks
of Digital Equipmeent Corporation. MS and XENIX are trademarks of Microsoft Corpora-

tion.

Contents

Chapter 1. IntroducCtion e 1
1.1 Features and Capabilities of PDL/8L 1
1.2 Document Styles and the PDL/81 Style Library 2
1.2.1 Distributed Document Styles 2
1.3 Related Publications 2
1.4 Warningtothe Reader 3
Chapter 2. General Information i 5
2.1 Overall Operation of PDL/81 s 5
2.1.1 Processing CycCle 6
2.2 Special CharaCterst 6
2.3 INpULSCaNNINg 7
2.3.1 Escape Character Interpretation 8
2.3.2 Continuation of InputLines 8
24 Command Lines 9
2.5 Expressions and Number Registers 10
251 Operands e 10
252 Operators 11
Chapter 3. Definition and Control Primitives 13
3.1 EXecution StruCtUre i 13
3.1.1 Establishinga SourceLineTrapo ... 15
3.2 String Definition Primitives 15
3.3 Number Register and Evaluation Primitives 16
3.4 Duplication and Deletion 17
3.5 Execution CoNtrolt e 17
3.6 String Processing Primitives 19
3.7 Primitives for Inputand Output 19
3.7.1 Including Alternate Source Files 20
3.7.2 Input and Output to Auxiliary Files 20
3.7.3 /O to Standard Output and Standard Error Files 22
3.7.4 Miscellaneous Input and Output Primitives 22

ii PDL/81 Format Designers Reference Guide

3.8 Error Reporting Primitives 23
3.9 Special Character Redefinition 23
3.10 Debugging Primitives 24
3.11 Processor Information Primitives 24
3.12 Saving the DICtioNary e 25
Chapter 4. Formatting and Design Primitives 27
4.1 Page Size Specification 27
4.2 Headingand Footing Traps 28

4.2.1 Forcing Heading and Footing Trapsc.uuiueena... 29
4.3 Vertical SPaCiNgo vt 29
4.4 Horizontal Marginsand Indenting 30
4.5 Design Oriented Special Characters 31
4.6 Modes of Automatic Formatting i 32

4.6.1 LineJustification 33

4.6.2 SpacesandBlankLines, 34
4.7 Output Formattingo 34

4.7.1 EstablishingaFormatTrapc..iinnnn.. 36
48 ExtralLineSpacing 36
4.9 String Processing Primitives 36
410 BoxDrawing 37
4.11 Secondary Dictionary Operations 38
4.12 Flow Figure Checkingt 40
4,13 Executable Keywords 41
4.14 Specifying Keyword Alignment 42
415 Case Control 42
4.16 Flow Figure Enhancement 43
4.17 Design Attribute Controls 43
4.18 Specifying Marginal Information 46
4.19 Explicit Reference Processing 46

4.19.1 Establishinga Reference Trap 46
420 ENVIrONMENIS 47
4.21 Switch Manipulation Primitives 49
4.22 Saving and Restoring the State of the Formatter 49
423 TextDIVEISIONSo 50
4.24 Final Output Diversion 50
4.25 Definition and Referencingof Tags 51
4.26 Printing Design Treest 52
4.27 Data ltem and SegmentIndexes 54
Chapter 5. Font Definitionand Use 57
5.1 UsSINg FONtS 57
5.2 Defining FoNtS 58

5.2.1 Per-Character FontAction 58

5.2.2 Actions on Beginning and EndingaFont 59
5.3 Initial Font Definitions 60
5.4 Selecting Keyword FONtS 60
5.5 Miscellaneous Font Control Primitives 60

Contents iii

5.6 Explicit Keyword Enhancement 60
Chapter 6. Regular Expression Processingco . 61
6.1 Scanning for Regular EXPressions 61
6.2 Extracting Matched Substrings 62
6.3 Input Scanning With Regular EXpressionsouiiiiiinnn. 62
Chapter 7. Escape FUNCLIONS e 63
Chapter 8. Special Strings 65
Chapter 9. Built-In Number Registers i 67
9.1 Command Control Registers 67
9.2 Dateand Time RegiSters e e 67
9.3 Output Control Registers i e 68
9.4 Cross Reference Control Number Registers 68
9.5 Tree RegiSterSo 68
9.6 Indexing Registers i 69
9.7 TagRelated Registers 69
9.8 Font Control REQIStEISo 69
9.9 Informational Registers 69
Chapter 10. Examples of Use e 71
10.1 Defining the Processing Structure 71
10.2 Obtaining Printable Dates 72
10.3 Establishing Page Headingsand Footings 72
10.4 Formatting a Flow Segment i 73
10.5 Tableof ContentsHandling 74

10.5.1 Printing an In-Line Table of Contents 75
10.6 Index Handlingc. 76
10.7 TagHandling 76

Appendices

AppendixX A. Error MESSagesSttt 79
A.1 Non-Terminal Error MesSsages 79
A.2 Terminal Error MESSAgeSot 80
Appendix B. List of Primitives 83
Appendix C. List of Number Registers 89

1. Introduction

This manual presents the lowest-level external description of the PDL/81 proces-
sor and its Format Definition Language (FDL). It is intended for the sophisticated
and knowledgeable user who is faced with the task of developing an entirely new
PDL/81 document style definition or of making extensive modifications to an exist-
ing definition. It is not intended for the normal PDL/81 user who is concerned
with processing a program design or formatting a manual or report. Such users
should refer to the manuals which describe the various document styles.

Minor modifications to existing document style definitions can usually be
made without reference to this manual. An examination of the definition file to be
changed, and some familiarity with macro and text processing systems, are gener-
ally all that are required for minor modifications.

1.1 Features and Capabilities of PDL/81

PDL/81 is a tool which integrates the capabilities commonly associated with a pro-
gram design language processor and those of a text processing system.

This integration is accomplished by providing an extensive set of primitive for-
matting operations and a definitional language which allows a format designer to
compose abstract constructs from these primitive operations. As an example, the
document style for program designs might contain such concepts as “data
segment” and “flow segment” while a style for manuals might contain such con-
cepts as “chapter”, “enumerated list”, and “paragraph”.

The end user of PDL/81 uses these abstract concepts without any need to un-
derstand the underlying implementation or format design methods. Thus, writing
and processing program designs is as simple with PDL/81 as with other PDL pro-
cessors, but the local project manager has significantly more control over the lay-
out and appearance of the resulting design document.

The primitive operations of the Format Design Language allow the format de-
signer a very high degree of flexibility in creating document styles. Among the
available capabilities are:

« Complete control over page layout including sheet dimensions and top, bot-
tom, left, and right margins;

2 PDL/81 Format Designers Reference Guide

12D

Arbitrary running text at top and bottom of each page including security
banners with document classification and sheet count;

Definition of primary and secondary keywords for use in program designs;

Definition of layout and characteristics of all program design segment types
and the ability to create new types of segments;

Continuation of all input lines — both commands and text;
Tab expansion on source input;

Case insensitivity for all dictionary searches;

Ability to include input from alternate files;

Automatic generation of table of contents and other such tables (e.g., table of
figures, table of tables);

Automatic generation of document indexes in various forms.

ocument Styles and the PDL/81 Style Library

The document styles which are available at an installation reside in the PDL/81

style

library. The form of the data base depends on the particular host operating

system. The particular style to be used in a PDL/81 run is specified as an option

when

PDL/81 is invoked.

1.2.1 Distributed Document Styles

Several document styles are distributed along with the PDL/81 processor. These
include:

design the standard program design style

manual a style for formatting manuals

letter a style for formatting a letter
memo a style for formatting a memorandum
text a style for formatting general text

1.3 Related Publications
Other publications relating to the use of PDL/81 are:

PDL/81 Introduction and Invocation Guide — a guide to invoking PDL/81
under various operating environments

PDL/81 Design Language Reference Guide — a guide to using PDL/81 for
producing software design documents

PDL/81 Ada Design Language Reference Guide — a guide to using PDL/81
for Ada program design

PDL/81 Document Language Reference Guide — a guide to using PDL/81 for
producing manuals and reports

PDL/81 Installation Guide — a guide to installing PDL/81 under the various
supported operating systems.

Chapter 1: Introduction 3

1.4 Warning to the Reader

This is a reference manual; it is not a tutorial manual. It is assumed that the
reader has a good working knowledge of macro processors and text processing sys-
tems.

This manual is not intended to stand alone. It should be read in conjunction
with the listings of one or more actual document style definitions and with the cor-
responding document style manuals.

2. General Information

This chapter discusses various aspects of the PDL/81 processor which are of gen-
eral interest to all persons who intend to define new design styles or to modify ex-
isting style definitions. It includes information on the overall operation of the pro-
cessor, low-level input line syntax and scanning, and the syntax and semantics of
expressions.

2.1 Overall Operation of PDL/81

When PDL/81 is invoked, it first performs various initialization operations. Then,
it locates the format definition file using various invocation options. This file
should contain a series of function definitions which define the particular format-
ting style. The processing of this file is known as the “definition phase”. At the
conclusion of the definition phase, the function “$dev-xxx” is invoked, where “xxx”
is the device type specified by an invocation option or “default” if the option is not
given.

If the “$dev-xxx” function does not exist, a search is made for the file “xxx.d” in
the style library directory. If it is found, it is input and executed as if it had been
contained in the definition file.

If the “$dev-xxx” function is not defined, a “xxx.d” file does not exist, and “xxx”
was specified with an invocation option, PDL/81 processing is terminated. How-
ever, this device proocessing may be supressed by defining the “$NoDev” string.

When the “$dev-xxx” function returns, the function “$start” is invoked. As
long as the “$start” function is in control, the processor is said to be in the “process
phase”. When the “$start” function returns, the “$end” function is invoked. When
that returns, PDL/81 exits.

If the functions “$start” or “$end” are not defined, the attempts to invoke them
are ignored.

All processing of the source input and production of the formatted output must
be performed by the “$start” function. Usually, this is accomplished by invoking
one or more of the primitive functions “passl”, “pass2”, and “pass3”. Each of these
is given the name of a source file which is read and processed. The “passl1” primi-
tive is used during the first pass of processing a program design where it is neces-
sary to collect definitions of design segments. The “pass2” primitive is used to pro-
duce the formatted output. The “pass3” primitive provides for special processing
where only command lines are processed.

-5-

6 PDL/81 Format Designers Reference Guide

These passes are described in detail in Section 3.1.

2.1.1 Processing Cycle
The main cycle for each phase of PDL/81 consists of:

DO UNTIL end-of-file on source
i nput and collect a line
IF the line contained function calls
expand the line
I F the expanded result is not null
process the line ..the result of the expansion
ENDI F
ELSE
process the line
ENDI F
ENDDO

The operation of “input and collect a line” is described in Section 2.3.

The operation of “process the line” depends upon the state of PDL/81 at the
time the line is encountered. Note that the operation is not performed for a line
which contained a function call if, after expanding the line, the result is empty.

If the operation is performed during the definition phase, it is considered to be
an error. Thus, the expansion of a line of the definition file must be empty.

If the operation is performed under control of the “passl” primitive, the line is
processed to collect such information as data item definitions.

If the operation is performed under control of the “pass2” primitive, the line is
formatted for output just as if it had been the argument to a call on the “fm” prim-
itive (see Section 4.7).

2.2 Special Characters

The following characters have special significance to the PDL/81 processor. Their

interpretation is described in Section 2.3 and Section 2.4.

% the command character which, when appearing as the first character of a
line, signals that the line is a command line.

the break character which, in combination with other special characters, sig-
nals the start of a function call or a reference to a parameter.

{ the left bracket which, together with “}”, is used for grouping.
} the right bracket which, together with “{”, is used for grouping.

; the argument separator which is used to separate arguments in a function
call.

? the argument count character which, in conjunction with the break charac-
ter, is used to obtain the number of arguments with which a function is
called.

\ the escape character which has various uses as described in Section 2.3.1.

With the exception of the escape character, these characters are only given special
treatment when used in the contexts described in this manual.

Chapter 2: General Information 7

Each of these special characters may be redefined by use of the “cc” primitive
function as described in Section 3.9.

In addition, a continue character can be defined with the “cc” primitive which,
when used at the end of an input line, allows the line to be continued in the man-
ner of PDL/74 (see Section 2.3.2).

2.3 Input Scanning

Each input line is scanned and collected one character at a time. The only ASCII
control codes allowed are “tab” and “newline”. Each tab is replaced on input by
enough blanks to position the immediately following character to the next input
tab stop column (1, 9, 17, ...).

When the sequence “#{” is encountered, it is replaced by the internal meta code
CALL and the following sequence of characters up to the next “}’ or *;” is consid-
ered to be the name of the function to be called.

Once a “#{” has been encountered, the following translations occur:

1. #n—>PARMN (0 <= n <= 25)

2. ##n —> PARMnN ARG PARMNn+1 ARG PARMNn+2 ARG ... PARMmax
3. #? —> NPARM

4. { —>LBR

5. } —=> RBRif it matches a LBR or —> ECALL if it matches a CALL

6. ; — ARG

Thus, the line
abc#{xy; zd; { aa#{ bb; c} #3} } wxy
will yield

abc CALLxy ARG zd ARG LBR aa CALLbb ARG c¢ ECALL PARMB RBR
ECALL wxy

The case (upper, lower, mixed) of a function name is immaterial.

After the line is collected, it is “expanded” if it contained any CALL’s. When
the line is expanded, it is scanned from left to right and characters are copied to
an “output string” which is the result of the expansion. Characters between an
LBR and the matching RBR are simply copied. Encountering a CALL (outside of
LBR/RBR) causes arguments (separated by ARG’s) to be collected until an ECALL
is encountered. The called entity is then invoked, with the output of the invoca-
tion being placed to the right of the scan arrow so that the output, itself, will be
scanned in turn. The meaning of “invocation” depends upon the type of the called
entity:

primitive the output, if any, depends on the definition of the primitive as
described in this manual.

string the output is the string with any NPARM replaced by the num-
ber of arguments (always at least one — the name of the string
counts as one argument) and any PARMNnN replaced by the nth
argument (argument 0 is the name of the string being called).

8 PDL/81 Format Designers Reference Guide

Strings are defined with the “ds” primitive (see Section 3.2).
number register the output is the value of the number register. Number regis-
ters are defined with the “nr” primitive (see Section 3.3).
In all cases, excess arguments are ignored and a reference to a missing argument
is the same as a reference to an explicitly null argument.

Primitives, strings, and number registers share the same name space. Collec-
tively, they are sometimes referred to as functions.

A CALL of an undefined entity yields a null output.

Scanning is fully recursive so that a CALL within a CALL will result in invo-
cation of the inner entity before invocation of the outer.

2.3.1 Escape Character Interpretation

The escape character (“\”) is used to remove the special significance of special
characters or to assign special significance to some normal characters. During in-
put scanning, the following translations occur:

\#—>#

\{—>{

\} >}

\;—>;

* —> BULLET (this is a special character used to represent a “bullet” on the
output device. Chapter 8 describes the method of defining the printer se-
guence to generate a bullet)

o~ w DN e

6. \ followed by a space —> unpaddable space (will not be expanded or con-
tracted during line justification; does not act as a word delimiter)

7. \ followed by a newline are both deleted, causing continuation to the next
line

8. \ followed by decimal digit —> decimal digit

2.3.2 Continuation of Input Lines
Input lines may be continued in two ways:
« The sequence “\<newline>" results in deletion of both characters, thus caus-
ing the following line to be considered part of the current line.

« The sequence “<continue-character><newline>" will be replaced by a single
blank, thus causing the current and following lines to be a single line with
their contents separated by a blank. This continuation mechanism is pro-
vided for compatibility with that of the PDL/74 processor.

Within a CALL, leading white space on continuation lines is ignored.

Chapter 2: General Information 9

2.4 Command Lines

If the first character of a line is the command character (“%”), the line is consid-
ered to be a command line. When a command line is encountered, white space fol-
lowing the command character is skipped. If a newline is encountered, the com-
mand line is ignored. If an asterisk (**”) is encountered, the line is considered a
comment line, the rest of the line is skipped, and the whole line is ignored.

If anything else is encountered, it is assumed to start a command name which
extends to the first blank or newline. The line is then transformed so that

%hame text
becomes

#{ cname; t ext }

where “c” is:

0 if encountered during the definition phase
1 if encountered during “passl” processing
2 if encountered during “pass2” processing
3 if encountered during “pass3” processing

Thus, the command line

% nclude test.p
would become

#{ 21 ncl ude; t est . p}

if encountered during “pass2” processing.

Normally, all text on the command line following the command name is taken
as a single argument to the derived function name and no special character inter-
pretation (except for escape character processing) is performed. This can be
varied, however, by use of certain built-in number registers:

- If the “.cmmdarg” built-in number register is assigned the value of “1”, detec-
tion of arguments on command lines is enabled and leading spaces will be
removed from each argument. If the register is assigned the value of “2”, de-
tection of arguments on command lines is enabled but leading spaces will
not be removed from arguments other than the first.

- If the “.cmdcall” built-in number register has a non-zero value, detection of
the “#{” sequence is enabled during command line collection.

Normally, an undefined command name (undefined derived function name) will
result in the command line being quietly ignored. This can be changed, however,
by assigning a value to the “.cmderr” built-in number register. If the value is “1”
and an undefined command name is detected during “passl” processing, an error
message will be issued. If the value is “2” and an undefined command name is de-
tected during “pass2” processing, an error message will be issued.

10 PDL/81 Format Designers Reference Guide

2.5 Expressions and Number Registers

Many PDL/81 primitives take arguments which are numeric values. Values can
generally be represented by expressions as described in this section.

An expression is composed of operators, operands, and parentheses. There is
no operator precedence — except where modified by parentheses, the order of eval-
uation is strictly left to right.

Error messages are not issued for ill-formed expressions. If an error is de-
tected, the value computed to that point is usually returned.

A null expression yields a value of zero.

If an expression is preceded by a “+” or a “-”, it is said to be a relative expres-
sion; otherwise, it is said to be an absolute expression. In evaluating a relative ex-
pression, the leading “+” or “-” is stripped before processing the rest of the expres-
sion. Relative expressions are normally used to increment or decrement some-
thing, as described for certain primitives in this manual. If the context of the use
of a relative expression does not imply something to increment or decrement, the
value of the expression is taken relative to zero. In such a case, “-1” is the same as
“(-1)”, but “-5+1” is the same as “-(5+1)” since it is taken as “0 decremented by
5+1”.

2.5.1 Operands

An operand of an expression may be a numeric constant, a character constant, a
control character constant, or a number register.

If an operand begins with a decimal digit, it is a numeric constant. The vari-
ous types of numeric constants are:

« |If the first two characters of the constant are “Ox” or “0X”, the constant is
hexadecimal. The digits forming the constant should come from the set O, 1,
. 9,4, b, ..., f. The letters “a” through “f” may be given in upper or lower
case.

- If the first character of the constant is “0” and the second character, if any,
is neither “x” nor “X”, the constant is octal. The digits forming the constant
should come from the set 0, 1, ..., 7.

- Otherwise, the constant is decimal, and the digits forming the constant
should come from the set 0, 1, ..., 9.

If an operand begins with the single-quote (') character, it is a character constant.
The internal binary representation of the immediately following single character
is taken as the value of the constant.

If an operand begins with the character ‘v, it is a control character constant.
The value of the constant is the value of the rightmost five bits of the internal rep-
resentation of the immediately following character. For example, “~h” has the
value “8”, which is the ASCII backspace control character.

If an operand begins with a letter or with one of the special characters “.”, “$”,
or “_" it is the name of a number register. The remaining characters (if any) in the
name come from the same set. No distinction is made between the upper and
lower case forms of a letter. Number registers are the numeric valued variables of
PDL/81 and are assigned values and are manipulated by the “nr” primitive (see
Section 3.3).

Chapter 2: General Information 11

2.5.2 Operators

The unary operators are:

+

unary plus (has no effect)
negation

not — result is zero if the argument is non-zero; otherwise the result is
one

The binary operators are:

+

«
/
%
&
I

=0or ==

addition

subtraction

multiplication

integer division

remainder

and — result is one if both operands are non-zero; otherwise, it is zero
or — result is one if either operand is non-zero; otherwise it is zero

equal to — one if left and right operands are numerically equal; other-
wise, zero

not equal to — one if left and right operands are not numerically equal,
otherwise, zero

greater than — one if left operand is numerically greater than right
operand; otherwise, zero

greater than or equal to — one if left operand is numerically greater
than or equal to right operand; otherwise, zero

less than — one if left operand is numerically less than right operand;
otherwise, zero

less than or equal to — one if left operand is numerically less than or
equal to right operand; otherwise, zero

3. Definition and Control Primitives

This chapter discusses those Format Design Language primitives which are used
for such purposes as defining strings and number registers, performing explicit in-
put and output operations, and controlling the flow of execution. Chapter 4 dis-
cusses the primitives which are used for processing program design language in-
put and for formatting output.

The description of each primitive gives the name of the primitive and the list
of possible arguments. If an argument is described as being a string, a sequence of
characters comprising the string, and not the name of a string, is meant. A se-
guence of characters is taken to be the name of a string only when explicitly so
stated.

3.1 Execution Structure

Section 2.1 described the overall operation of the “process phase” which handles
the actual processing of the source file. The two main drivers of this phase are the
“passl” and “pass2” primitives. There is also a “pass3” primitive driver that pro-
cesses only command lines.

Each of these primitives takes one argument which is the name of the file to be
processed. If the name is not given, is null, or is a single minus sign (“-”), the stan-
dard input file will be processed.

The name of the first (or only) source file specified at invocation of PDL/81 may
be obtained by the “source” primitive:

#{ sour ce}

The “passsub{i}”’ primitives have the form

#{passl;fil e}

-13 -

14 PDL/81 Format Designers Reference Guide

#{pass2;fil e}

#{pass3;fil e}

and typical usage might be
#{ passl; #{source}}
During “passl” processing, the following actions occur:
« The character “1” is prepended to each command name as described in Sec-

tion 2.4;

- Each source line is scanned for explicit data item definitions as controlled by
the “ddf” primitive (see Section 4.17) and for implicit segment definitions as
defined by the “sdf” primitive (see Section 4.17).

During “pass2” processing, the following actions occur:
« The character “2” is prepended to each command name as described in Sec-

tion 2.4;

« Each source line (except for those that contain function calls which result in
a null line) is scanned for implicit data item definitions as controlled by the
“ddf” primitive (see Section 4.17), for data item references as controlled by
the “drf” primitive (see Section 4.17), and for segment references as con-
trolled by the “srf” primitive (see Section 4.17). The line is then formatted
for output by passing it to the “fm” primitive (see Section 4.7).

During “pass3” processing, the following actions occur:

« The character “3” is prepended to each command name as described in Sec-
tion 2.4;
« Each command line is processed and all others are skipped.
Note that the term “pass3” is simply a name for this kind of processing. It is not
intended to be indicative of processing order.

The primitive

#{$fi e}

returns the name of the current file being processed, whether as a result of
definition processing, “passl” processing, “pass2” processing, “pass3” processing,
or “include” processing.

The primitive

Chapter 3: Definition and Control Primitives 15

#{scal | ; func}

calls the function func once for each source file given in the PDL/81 invocation
line. At each call, func is given that source file name as its single argument. Thus,
if PDL/81 were invoked under Unix as

pdl 81 filel file2 file3
or under VMS as

pdl 81 filel, file2,file3
the call

#{scal | ; pass1}
would have the same effect as

#{passl;filel}

#{passl;fil e2}

#{passl;fil e3}

If no source files were given when PDL/81 was invoked, “scall” will call func with
no argument.

3.1.1 Establishing a Source Line Trap
The primitive

#{strap; functi on- nane}

establishes a source trap. Once established, normal source lines and those which
are not null after expanding any function calls will not be processed normally by
PDL/81. Instead, the named function will be invoked with the line as its argu-
ment. Operation will continue in this way until the source trap is canceled by a
call on “strap” without a function name.

3.2 String Definition Primitives

A string is a sequence of characters which is given a name and stored in the
PDL/81 primary dictionary.

A string is defined by the “ds” (Define String) primitive

#{ ds; nane; cont ent s}

where name is the sequence of characters by which the string will be referenced
and contents is a sequence of characters to be placed in the string.

16 PDL/81 Format Designers Reference Guide

If a “ds” names an existing string, that string is replaced. It is an error for a
“ds” to specify the name of a primitive or a number register.

The “as” (Append to String) primitive has the form

#{as; nane; t ext }

which causes the characters of text to be appended to the contents of the string
given by name. If the named string does not exist, the “as” primitive is treated as
if it were “ds”. It is an error to apply “as” to a primitive or a number register.

3.3 Number Register and Evaluation Primitives

A number register is defined, or a new value is assigned to an existing number
register, by

#{ nr ; nane; val ue- expr}

Where name is the name of the number register (the syntax of number register
names which are to be referred to in expressions is defined in Section 2.5) and
value is an expression representing the value to be assigned to the number regis-
ter. If value is a relative expression, it will be taken relative to the existing value
of the register (or to zero, if the register does not yet exist). It is an error to apply
the “nr” primitive to a string or a primitive.

An expression can be evaluated and the value returned as a string by:

#{ ev; expressi on}

The value will be in the form of a decimal integer with a leading minus sign if the
value of the expression is negative.

An expression can be evaluated and the value returned in one of several nota-
tional forms by:

#{ nf ; f or mat ; expr essi on}

where format may be one of:

a the value will be returned as 0O, a, b, ..., z, aa, bb, ..., zz, aaa, ...
A the value will be returned as 0, A, B, ..., Z, AA, BB, ..., ZZ, AAA, ...

i the value will be returned as 0, i, ii, iii, iv, v, ...

Chapter 3: Definition and Control Primitives 17

| the value will be returned as O, I, I, 111, IV, V, ...
1 the value will be returned as 0, 1, 2, ... (this is the same form as returned by
the “ev” primitive)
If the value is negative, the result will be prefixed with a minus sign.
The primitive

#{eq; stringl; string2}

compares the two strings and returns “1” if they are equal and “0” if they are not
equal.

3.4 Duplication and Deletion
The primitive

#{del ; nanel; nane2; ...}

deletes the named item(s) which can be primitives, strings, or number registers.
It is an error to attempt to delete an item if the first character of its name is a pe-
riod (.). These are known as “permanent” items.

An item can be duplicated by:

#{ dup; ol d; new}

where old is the name of a primitive, string, or number register. If old does not
exist, it is taken to be the name of a null string. An item named new is created
with all of the attributes of the item named old. It is an error to change the type
(primitive, string, number register) of new if its name begins with a period (.).

3.5 Execution Control
The “if” primitive tests the value of an expression and returns one of two strings:

#{if;expression;stringl;string2}

If the value of expression is non-zero, the result is stringl; otherwise, the result is
string2.

The “ifdef” primitive tests whether a given name corresponds to that of a cur-
rently defined item (primitive, string, number register) and returns one of two
strings:

18 PDL/81 Format Designers Reference Guide

#{i f def; name; stringl; string2}

If name is defined, the result is stringl; otherwise, the result is string2.
The “case” primitive performs a “one out of n” selection:

#{ case; expression;string0; stringl;string2;...}

The expression is evaluated and the string corresponding to the value is returned.
A value less than zero is taken to be zero.

The primitive

#{1 oop; functi on-name; argl; arg2;...;argn}

will cause the named function to be executed n times — once for each of the arg ar-
guments and that argument will be passed as an argument to the function.

The primitive

#{1i ndex; key; stringl; string2;...;stringn}

compares key, in a case insensitive way, with each string in turn. It returns O if
there is no match; otherwise, it returns returns the number of the first string that
is identical to the key.

The primitive

#{cal |l ; nane; stringl;string2;...}

is equivalent to
#{nane; stringl;string2;...}

except that name is treated as any other argument to a function and, thus, may
contain function calls whose values are used to construct the actual name of func-
tion to be invoked.

The primitive

#{exit; status}

causes immediate exit from PDL/81. If the host operating system can accept an

Chapter 3: Definition and Control Primitives 19

exit status value from a process, “status” is returned as that value. A value of zero
is used if “status” is not provided.

3.6 String Processing Primitives
The primitive

#{substr; start-expr;|ength-expr;string}

returns a substring of string beginning at position start and extending for length
characters. Characters in a string are numbered starting at one. If length is null,
the substring extends to the end of string.

The length of a string, in characters, may be obtained by

#{1 engt h; string}

A string may be replicated by the “rep” primitive

#{rep; count - expr; string}

whose value is string replicated count times.

Special characters, such as device control codes, can be inserted into a string
by:

#{sneak; expr1;expr2;...}

The expressions are evaluated and the resulting characters are concatenated to
form the value of the primitive. Non-printing characters should be restricted to
special purposes such as use with the “Out” primitive (Section 3.7.3) and in font
control strings (Chapter 5). Note that 8-bit characters may be introduced into
strings by this primitive.

3.7 Primitives for Input and Output

Most input and output in PDL/81 is performed implicitly as a result of the overall
processing structure. However, provision is made for certain kinds of explicit in-
put and output as described in this section.

20 PDL/81 Format Designers Reference Guide

3.7.1 Including Alternate Source Files
The primitive

#{include;fil e}

causes the current processing phase (definition phase, “passl” processing, or
“pass2” processing) to be invoked recursively to process the named file. When the
end of file is reached, the primitive returns with a null value.

The primitive

#{1i b; nanme}

operates in the same manner as the “include” primitive except that the file name
is searched for in the data base library directory.

3.7.2 Input and Output to Auxiliary Files

Auxiliary files are identified by file numbers in the range zero through fourteen.
In the descriptions below, fn will be used to refer to a file number.

An auxiliary file is opened and assigned a referencing file number by

#{ open; fn-expr;fil e;special}

where file is the name of a file to be opened. The file is opened in output mode and
the previous contents, if any, of the file are deleted. If the file does not exist, it is
created. If the file argument is missing or null, the specified file humber will be
connected to the standard output file. If the special argument is present and non-
null, the file will be opened in an operating system specific way which, for VMS,
will supply the attributes

“rfomevar”, "rat=cr", "nrs=255"

Information is written on an auxiliary file by

#{send; f n-expr; string; key-1; key-2;...; key-n}

If the specified file has not been opened with the “open” primitive, a temporary file
will be created. The string argument will be written as the next line of the file. If
the any keys are supplied, provision will be made so that when the file is input
with the “rcv” primitive, the lines will be read in order sorted on the keys. Such a
sorted file must be a temporary file and if any “send” for a file contains a key, ev-
ery “send” for that file must contain a key.

Chapter 3: Definition and Control Primitives 21

If any keys are present, the file is said to be a keyed file and each record is com-
posed of a series of fields which are, in order from left to right, the payload string,
cardinal number of the record in the file represented as a string, and the key
strings. For reference purposes, the fields are considered numbered starting at
zero.

If string contains any internal meta codes (e.g., CALL, ARG, LBR) as de-
scribed in Section 2.3, the auxiliary file should only be a temporary file since the
internal form of some meta codes is specific to a given invocation of PDL/81. Es-
caped characters should be used to send lines containing function calls to non-
temporary files.

An auxiliary file may be input and deleted by

#{rcv;fn-expr;control-1;control-2;...;control-n}

where the controls are strings which are used to control the sorting of file.

If there are no controls specified and if the file is not keyed, it is just received
as written. If there are no controls but the file is keyed, it is first sorted on field 2
(the first key given with “send”) and then by field 1 (the sequence number).

If controls are given, the file is first sorted as specified by the controls. Each
control consists of a field number followed immediately by one or more option
codes. The option codes are chosen from the set:

Return only one of a set of identical (by sort criteria specified) records

Skip leading white space in this field before comparing.

- T C

Fold any upper-case characters in this field to lower case.

Ignore non-printing characters in this field.
n Compare leading numeric strings on this field numerically.
s Treat this field as a multi-part paragraph number and sort accordingly.

For example,
#{rcv;1;2;1n}

is equivalent to
#{rcv; 1}

if the file is keyed.
An open, non-temporary, auxiliary file may be closed by

#{cl ose; fn-expr}

22 PDL/81 Format Designers Reference Guide

3.7.3 1/0 to Standard Output and Standard Error Files
The primitive

#{ps; string; code}

will display string on the standard error file. A newline will be appended to the
string if code (which is otherwise ignored) is null. The “ps” (Print String) primitive
is intended for displaying messages and for debugging. See Section 3.8 for primi-
tives which are intended for issuing error messages.

The primitive

#{out; string}

immediately writes string on the standard output file. This is intended for out-
putting such things as device control codes and initialization sequences.

3.7.4 Miscellaneous Input and Output Primitives
The primitive

#{access;file;lib}

returns the character “1” if file exists and is readable; otherwise, it returns null. If
the lib argument is present and non-null, the file is searched for in the style li-
brary directory.

The primitive

#{ base; string}

considers string to be a file name in the syntax of the host operating system and
returns the base portion of the name. Under Unix, for example, this will be the
name with any extension stripped. Thus,

#{ base; abc/ def. hi }

yields “abc/def”.
The primitive

#{ backup}

will cause the source line last read in the normal process cycle to be reread as the

Chapter 3: Definition and Control Primitives 23

next source line.

3.8 Error Reporting Primitives
Error messages may be issued by

#{error; message-string}

which reports the error and continues processing, or by

#{qui t; message-stri ng}

which reports the error and terminates PDL/81 processing.

If applicable, the message will be prefixed with the name of the current source
file and the line number within that file of the line which caused the error.

3.9 Special Character Redefinition
The special characters described in Section 2.2 may be redefined by

#{cc; code-expr; char}

where code specifies the special function to be redefined and char is the new char-
acter to assume that function. If char is null, that special function is deleted. The
possible values of code are:

command character (%)

break character (#)

left bracket ({)

right bracket (})

escape character (\)

continue character (no default)

argument separator character (;)

N o o WON P O

argument count character (?)
For example, the command
#{cc;5;/}

will define the continue character to be a “/”.

24 PDL/81 Format Designers Reference Guide

3.10 Debugging Primitives
The primitive

#{tn}

turns on trace mode and the primitive

#{tf)

turns off trace mode. When trace mode is on, the name and arguments of each
function are displayed just prior to calling the function. If the pause mode invoca-
tion option was specified, the processor will pause after printing the trace infor-
mation and will wait for a newline from the standard input before proceeding.

The primitive

#{ pns; nane}

will display the name, type, and contents (except for primitives) of the item named
name.

3.11 Processor Information Primitives

Various information about the identification of the PDL/81 processor and about its
execution may be obtained by the primitives described in this section.

The primitive

#{1 pn}

returns the Licensed Program Number of the PDL/81 processor.
The primitive

#{ver}

returns the version number of the PDL/81 processor.
The primitive

Chapter 3: Definition and Control Primitives 25

#{ver 2}

returns a secondary version number for the PDL/81 processor.
The primitive

#{ menuse}

returns an integer showing the amount of dynamic memory currently in use by
the PDL/81 processor. It may be displayed for statistical purposes.

The primitive

#{systype}

returns a string which indicates the type of the host operating system. Among
these types are:

unix most Unix systems
vms the VMS operating system
dos the MSDOS or PCDOS operating systems

3.12 Saving the Dictionary
The current PDL/81 dictionary may be saved by the primitive

#{dunp; fil e- nanme}

which causes the dictionary to be dumped in encoded form to the named file. The
file is prefixed with a magic number so that special processing will take place
when the file is later input to the PDL/81 processor.

Dumping saves most of the dictionary items. However, only the following per-
manent number registers are dumped: .stree, .cwidth, .dclass, .cmmdcall, .cmdarg,
.cmderr, .noff, .notab, .boxfont, .mcfont, .nobs, and .po.

Note that this primitive is intended only to support preprocessed style files
and is not a general mechanism.

4. Formatting and Design Primitives

This chapter discusses those Format Design Language primitives which are used
for such purposes as specifying modes of formatting, defining page dimensions and
margins, defining segments and data items, and preparing various indexes.

The description of each primitive gives the name of the primitive and the list
of possible arguments. If an argument is described as being a string, a sequence of
characters comprising the string, and not the name of a string, is meant. A se-
guence of characters is taken to be the name of a string only when explicitly so
stated.

A number of primitives described in this chapter use an argument described as
a “setting” to set the state of some internal control variable. If such an argument
is null, or if its first character is the digit “0”, or if its first character is the letter
“n” (upper or lower case), or if its first two characters are the letters “of” (upper or
lower case), the internal control variable is placed in its off state. Otherwise, it is
set to the first character of the argument. The meanings of the various settings
are discussed with each such argument.

4.1 Page Size Specification
The overall dimensions of the output page are defined by

#{ psi ze; wi dt h- expr; dept h- expr}

where width specifies the width of the page in characters, and depth specifies the
depth of the page in lines. Prior to the first use of “psize”, the page width will be
120 characters and the page depth will be 66 lines. The maximum supported page
width is 256 characters and the maximum supported page depth is 330 lines. If
width is a relative expression, it is taken relative to the current page width. If
depth is a relative expression, it is taken relative to the current page depth.

If the page depth is set to zero by “psize”, the output will be considered as a
single page of indefinite depth. The page footer trap (Section 4.2) will never be
sprung and the “bp” primitive (Section 4.3) will be ignored.

-27 -

28 PDL/81 Format Designers Reference Guide

The primitive

#{ $wi dt h}

returns the current page width and the primitive

#{ $dept h}

returns the current page depth.

4.2 Heading and Footing Traps
The primitive

#{ head; nane}

specifies that name is the name of a function to be invoked by PDL/81 just before
processing the first line of a page. This so-called “header trap” can be used to for-
mat and print page headers.

The primitive

#{f oot ; nane; | oc- expr}

specifies that name is the name of a function to be invoked by PDL/81 just before
processing the line following the line whose number is given by loc. If loc is a rela-
tive expression, it is taken relative to the page depth specified by the “psize” prim-
itive. The maximum value of the trap location is the current page depth. When
the trap function returns, PDL/81 positions the output to the top of the next page.
The current position of the footing trap (i.e., the line number given in the last
“foot” primitive) is returned by

#{ $f oot }

The footing trap will never be sprung if the page depth is set to zero with the
“psize” primitive (Section 4.1).

Chapter 4: Formatting and Design Primitives 29

4.2.1 Forcing Heading and Footing Traps

If output is positioned at the top of a page but the heading trap has not been
sprung, the primitive

#{fht}

will spring the heading trap.

If the line with the number given in the “foot” primitive has been printed but
the footing trap has not been sprung, the primitive

#{fft)

will spring the trap.

4.3 Vertical Spacing
Vertical spacing is performed by

#{sp; | ines-expr}

where lines specifies the number of lines to space. If the argument is null, it is
taken as one. If a footing trap is encountered while spacing, the space request is
terminated and the trap is sprung.

A new page is started by

#{ bp}

which is equivalent to a “sp” request with a line count sufficient to spring the foot-
ing trap. If the page depth is set to zero with the “psize” primitive (Section 4.1),
the “bp” primitive will be ignored.

Both the “sp” and the “bp” primitives force a line break (see Section 4.6). Spac-
ing can be inhibited by

#{ spcok; setting}

where setting is

30 PDL/81 Format Designers Reference Guide

off vertical spacing requests (“sp”, “bp”) will be ignored until either spacing is
resumed with the “spcok” primitive or until the next line has been printed

other vertical spacing is resumed

The current vertical position on the output page is returned by

#{ $l i ne}

The first line on a page is line number one. However, “$line” will return a value of
zero if output is positioned at the top of a page but the heading trap has not been
sprung.

4.4 Horizontal Margins and Indenting

The left and right margins define the horizontal boundaries within which output
formatted by the “fm” primitive (see Section 4.7) is placed.

The current left margin is set by

#{ | m mar gi n- expr}

where margin specifies the margin with a value of one referring to the leftmost
column on the page. If margin is a relative expression, it is taken relative to the
current left margin. If margin is null, the left margin is restored to its previous
position. The initial left margin is set at position one. The position of the current
left margin is returned by

#{ $l nm}

The current right margin is set by

#{rm mar gi n- expr}

where margin specifies the position of the desired right margin. It may not exceed
the page width. If margin is a relative expression, it is taken relative to the cur-
rent right margin. If margin is null, the right margin is restored to its previous
setting. The position of the current right margin is returned by

#{ $r n}

The primitive

Chapter 4: Formatting and Design Primitives 31

#{in; i ndent - expr}

specifies that each formatted output line is to be indented the number of positions
specified by indent. If indent is a relative expression, it is taken relative to the
current indentation setting. The minimum indentation value is zero, which im-
plies no indentation. If indent is null, the indentation is restored to its previous
value. The current indentation is returned by

#{ $i n}

The primitive

#{ti;indent-expr}

sets indentation for the next formatted line. Thus, it provides a temporary inden-
tation. If indent is a relative expression, it is taken relative to the current inden-
tation as set by the “in” primitive. Use of “ti” in any formatting mode other than
filled (see Section 4.6) is undefined.

The “Im”, “rm”, “in”, and “ti” primitives force a line break (see Section 4.6).

4.5 Design Oriented Special Characters

PDL/81 supports both data characters and comment strings for use in design seg-
ments.

A data character is used to flag a word as being a data item. The definition
and referencing of data items are controlled by the “ddf’ primitive (see Section
4.17) and the “drf” primitive (see Section 4.17), respectively. Data characters may
be defined by

#{dc; charl;char2;...}

where each char is a string whose first character will become a data character. A
null argument causes deletion of all previously defined data characters.

Normally, data item names are composed of alphanumeric characters and data
characters (if any are defined). Any other characters are considered to be break
characters which delimit the names. Special characters, known as data special
characters, can be included in data item names by declaring them with

#{dsc; char1;char2;...}

where each char is a string whose first character will become a data special char-

32 PDL/81 Format Designers Reference Guide

acter. A null argument will cause deletion of all previously defined data special
characters.

A comment string is used to indicate the point in a line where scanning is to
stop for segment definition and segment referencing. These actions are controlled
by the “name” (see Section 4.9), “sdf” (see Section 4.17), and “srf” (see Section 4.17)
primitives. Comment strings may be defined by

#{cmstringl;string2;...}

where each string is to become a comment string. Comment strings may be at
most two characters long and no two comment strings may have the same first
character. A null argument will cause deletion of all previously defined comment
strings.

4.6 Modes of Automatic Formatting
The current mode of automatic formatting is selected by

#{fnt;setting}

where setting may be one of:

off nofilled mode is selected.
f filled mode is selected
S structured mode is selected

Output to be formatted in one of these modes is specified by use of the “fm” primi-
tive (see Section 4.7) either by an actual call on this primitive or by an implicit call
as generated during “pass2” processing.

In nofilled mode, each explicit or implicit call on “fm” is considered to repre-
sent a line. If the line cannot fit within the current output boundaries (from left
margin plus indent to right margin), the line will be split following a word and the
continued portion will be further indented by an amount known as the tab width.
The tab width is normally four characters but may be redefined by

#{tabw, wi dt h- expr}

If width is a relative expression, it is taken relative to the current tab width. The
current tab width is returned by

#{ $t abw}

Chapter 4: Formatting and Design Primitives 33

In filled mode, each explicit or implicit call of “fm” is considered to represent
an input line, but words are collected, regardless of input line boundaries, and are
put into the output line until a word does not fit. The output line is then printed
and a new output line is started. This action is known as “breaking” the line and
may be forced by

#{br}

A break is also forced by the primitives “bp”, “ce”, “env”, “envs”, “fft”, “fht”, “fmt”,
“in”, “Im”, “rm”, “sp”, “ti".

In structured mode, each explicit or implicit call on “fm” is considered to be a
design statement. If the line begins with a keyword (see Section 4.11), the
definition of the keyword will control the indenting of the statement. If the state-
ment cannot fit between the output boundaries, it will be continued with continua-
tion lines being indented twice the current tab width.

4.6.1 Line Justification

If justified mode is selected, output lines will be justified. Justification can be
turned on and off by

#{j ust; setting}

where setting can be

off turn off justification
other turn on justification.

Justification is initially off.

A line is justified by expanding inter-word spaces so that the right end of the
line is at the current right margin of the page. For most output devices, inter-
word spaces are expanded by integral multiples of the character width. However,
some devices allow a finer horizontal resolution so that PDL/81 may distribute the
extra inter-word spacing more equally during justification. This type of
justification is accomplished by setting the “.cwidth” number register to the width
of a character in device basic horizontal resolution units.

For example, the Diablo 1620 uses 1/60th of one inch as its horizontal resolu-
tion in graphics mode. Thus, at 12 characters per inch, “.cwidth” should be set to 5
to request equalized justification. When PDL/81 needs to output less than a full
space character, it first outputs the contents of the special string “*gon”. It then
outputs the required number of space characters. Finally, it outputs the contents
of the special string “*goff”. For example, the following definitions can be used for
a Diablo 1620:

#{nr;.cw dt h; 5}
#{ds; *gon; #{sneak; 033;’ 3} }
#{ds; *gof f ; #{ sneak; 033; "’ 4} }

34 PDL/81 Format Designers Reference Guide

4.6.2 Spaces and Blank Lines
Leading spaces on input lines can be ignored or kept by

#{| sp; setting}

where setting may be

r leading spaces are removed
k leading spaces are kept

Initially, leading spaces are kept.
Imbedded spaces on input lines can be kept or compacted by

#{isp; setting}

where setting may be

c imbedded spaces are compacted (i.e., a sequence of more than one space is
replaced by one space)

k imbedded spaces are kept

Initially, imbedded spaces are kept.

The action of PDL/81 on encountering a blank (or empty) input line can be
specified by

#{bll;setting}

where setting may be

r blank lines are removed

k blank lines are kept. Each blank line will act as a call on the “sp” primitive
to space one line and will force a line break.

a in filled mode, blank lines trigger the “automatic paragraph” mechanism
which will cause the user function “$pp” to be invoked; in nofilled mode,
blank lines will be treated as described for the “k” setting, above.

4.7 Output Formatting
The primary way of formatting output is with the primitive

Chapter 4: Formatting and Design Primitives 35

#{fm string}

where string is considered to be the text of a line to be formatted and printed in
the manner controlled by the current formatting modes (see Section 4.6). This
primitive is invoked implicitly during “pass2” processing as described in Section
2.1 and Section 3.1.

A line may be centered between the current left and right margins by

#{ce;text}

A three-part line (as in a page heading or footing) may be output by

#{ttl;left-string;center-string;right-string}

which will cause left to be printed flush with the left margin, right to be printed
flush with the right margin, and center to be centered between the left and right
margins.

The primitive

#{stuff;l oc-expr;text}

places the characters of text into the output line starting at the position given by
loc. If loc is a relative expression, it is taken relative to the current output posi-
tion. The specified position may be to the left of the left margin or to the right of
the right margin.

The primitive

#{| eader ;| eader-string; prefix-string;suffix-string}

defines a leader string, prefix string, and suffix string in the current environment.
If a leader string is defined and a line break occurs, the space between the end of
the line and the right margin is filled by placing the prefix string at the left, the
suffix string at the right, and as many replications of the leader string as are
needed to fill the remaining space.

36 PDL/81 Format Designers Reference Guide

4.7.1 Establishing a Format Trap
The primitive

#{fnmtrap; functi on- nane}

establishes an fm trap. Such a trap will be sprung, and the given function
invoked, just before processing the next “fm” primitive. When the trap is sprung,
it is deleted so that the named function may, if desired, use the “fm” primitive.
For example, the definitions

#{ds; xxx; #{fm (TS) }}
and

#{fmt rap; xxx}

would cause “(TS)” to be displayed just in front of the output from the next “fm”.

4.8 Extra Line Spacing
The primitive

#{el s; n-expr}

will cause n blank lines to be inserted following each non-blank line printed. If
the footer trap is sprung while printing the blank lines, any remaining blank lines
will be absorbed.

4.9 String Processing Primitives
The primitive

#{wi dt h; string}

returns the number of characters which string would occupy if printed. This cal-
culation takes into account the setting of the “imbedded spaces” mode as set by
the “isp” primitive.

The primitive

#{ nane; string}

returns the contents of string up to, but not including, the first comment string.
Leading and trailing spaces will be removed, and imbedded spaces will be com-

Chapter 4: Formatting and Design Primitives 37

pacted.
The primitive

#{sqz; string}

returns its argument with each sequence of more than one consecutive blank re-
placed by a single blank.

The new primitive

#{ nargs; string}

returns a count of the number of arguments encountered in the string. The string
is assumed to be a call to a flow segment and may have an argument list enclosed
in parentheses. If a list is found, the arguments are assumed to be strings sepa-
rated by zero-level (with respect to other parentheses and to single and double
guote marks) commas.

4.10 Box Drawing
An automatic box is started by

#{ box; | m expr; rmexpr; h-char;lv-char;rv-char; c-char}

where the arguments are

Im specifies the left margin of the box

rm specifies the right margin of the box. If this is a relative expression, it is
taken relative to the left margin of the box.

h the character to draw horizontal lines

v the character to draw the left vertical edge of the box

rv the character to draw the right vertical edge of the box

C the character to form the corners of the box

The abbreviated form

#{ box; | m expr; rmexpr; x-char;rv-char}

will use x as the h, lv, and c characters, and the abbreviated form

38 PDL/81 Format Designers Reference Guide

#{ box; | m expr; rmexpr;y-char}

will use y as all of the characters.

An expanded form, which provides for specifying all portions of the box, is also
available:

#{ box; | mexpr; rmexpr; h-char;|v-char;rv-char;
ul -char; ur-char;ll-char;lr-char}

where the additional arguments are

ul character to draw upper-left corner

ur character to draw upper-right corner

I character to draw lower-left corner

Ir character to draw lower-right corner

The “box” primitive will draw the top of the box and arrange that any subse-
quently printed lines will be enclosed in the appropriate vertical edge characters.

All box drawing characters will be printed in the font specified by the
“.boxfont” number register.

A box is terminated by

#{ ebox}

which will draw the bottom of the box.
Boxes may not be nested.

4.11 Secondary Dictionary Operations

The so-called secondary dictionary is the repository for such items as keywords,
secondary keywords, flow segment names, and data item names. An entry is made
in the secondary dictionary by

#{ dx; t ype- expr; nane- stri ng; code- expr;
val 1- expr; val 2- expr; val 3- expr; val 4- expr}

where type specifies the type of entry to be made, name is the name of the entry,
and code and the valsubi depend upon the type of entry. The maximum value of
“code” is 255. If the entry was previously defined, the call on “dx” overrides this
and the primitive returns a “1”; otherwise, the definition is made and the primi-
tive returns a “0”.

Chapter 4: Formatting and Design Primitives 39

There is a separate name space for each of the entry types. The possible types
are:

1 the entry is a keyword. The “vall” argument specifies the indent to apply
prior to printing the line; the “val2” argument specifies the indent to apply
after printing the line. The indents are interpreted as integral multiples
(positive or negative) of the current tab width (see Section 4.6). The “val3”
argument controls flow figure checking (Section 4.12). The low-order eight
bits of the “val4” argument represent the cyclomatic complexity of the key-
word; the high-order 8 bits are flags (0x01 means do not process what fol-
lows for references). Keywords have significance only in structured mode
formatting (see Section 4.6). Keywords are printed in the current keyword
font (see Section 5.4).

2 the entry is a secondary keyword. The low-order eight bits of the “val3” ar-
gument represent the cyclomatic complexity of the keyword; During struc-
tured mode formatting, secondary keywords are recognized as such if they
immediately follow a keyword or another secondary keyword. Secondary
keywords are printed in the current keyword font (see Section 5.4).

3 the entry is a flow segment name. The “code” argument may be any desired
value and is usually used to distinguish various types of flow segments. The
code value is made available during index processing (see Section 4.27). The
“vall” argument should be the page number of the definition and the “val2”
argument should be the line number of the definition (if applicable).

4 the entry is a data item name. The “code” argument may be any desired
value and is usually used to distinguish various types of data items. The
code value is made available during index processing. The “vall” argument
should be the page number of the definition and the “val2” argument should
be the line number of the definition (if applicable).

5 Defines an executable pass 1 keyword (Section 4.13). The “vall” argument is
the name of the function to be executed.

6 Defines an executable pass 2 keyword (Section 4.13). The “vall” argument is
the name of the function to be executed.

If xsw 4 (Section 4.21) is set during pass one, the complexity measure for each key-
word scanned in the source is added to the value in the “.ixcmplx” number
register. If xsw 8 is set during pass two, the complexity measure for each keyword
scanned in the source is added to the value in the “.ixcmplx” number register.

During automatic cross-reference collection (see Section 4.17, in “pass2” pro-
cessing, the current flow segment must be known to PDL/81. This is accomplished

by

#{ sx; nane-stri ng}

where name is the name of the current flow segment which must have been
defined with the “dx” primitive.

The primitive

40 PDL/81 Format Designers Reference Guide

#{f x; type-expr; nane-string}

may be used to search the secondary dictionary for a named item of a particlar
type and to retrieve information about that entry. If the named entry is not found
with the specified type, a value of “0” is returned. If it is found, the value “1” is re-
turned and, in addition, the following special number registers are set:

.ixdcode The “code” value specified when the item was defined with the “dx”
primitive.

.ixdpage The *“vall” value specified when the item was defined with the “dx”
primitive.

.ixdline The “val2” value specified when the item was defined with the “dx”
primitive.

ixdval3 The “val3” value specified when the item was defined with the “dx”
primitive.

.xdvald The “val4” value specified when the item was defined with the “dx”
primitive.

4.12 Flow Figure Checking

The val3-expr as set by the “dx” primitive is used to contain a class/code pair in
the form class*256+code.

The classes are used to distinguish between flow figures and are positive num-
bers. The codes are used to distinguish among types of keywords within a given
flow figure and are in the range 0-5, inclusive. The codes are used to access the
state table

NNN T NN
OO0 WOl W
OWwWw:r wol| M

OWwWw:r wol| Ol

RPRR I RR| R

cloleoloNolNe]

abrwNEFLO

where the column headings correspond to the code of an incoming keyword, the
row headings correspond to the code at the top of the keyword stack, and the table
entries are actions to be performed.

The codes may be thought of as corresponding to
0 As an incoming keyword, this is one that doesn't make any change in the

structure (such as RETURN or UNDO). Since these are never pushed on the
stack, a code of 0 on the stack means the stack is empty.

1 Afigure-opening keyword (such as DO or IF).

Chapter 4: Formatting and Design Primitives 41

A figure-ending keyword (such as ENDDO or ENDIF).

An intermediate keyword that may only occur once following a figure-opening
keyword.

4 An intermediate keyword that may occur any number of times after a code 2
or 3 keyword. ELSEIF is an example.

5 An intermediate keyword that may occur once after a code 2, 3, or 4 keyword
and may not be followed by a code 3 or 4 keyword. ELSE is an example.

A separate class should be assigned to each flow figure. For example, the

IF...ENDIF figure might be class 1 and the DO...ENDDO figure might be class 2.

The actions are

Do nothing.
Push the class and code of the incoming keyword onto the stack.

If the incoming class matches that on the top of the stack, pop the stack.
Otherwise, invoke the function “$kwerr” with an argument of 3.

3 If the incoming class matches that on the top of the stack, pop the stack and
push the class and code of the incoming keyword onto the stack. Otherwise,
invoke the function “$kwerr” with an argument of 3.

Error: invoke the function “$kwerr” with an argument of 0.
Error: invoke the function “$kwerr” with an argument of 1.
6 Error: invoke the function “$kwerr” with an argument of 2.

Flow figure processing is enabled in pass one if xsw 16 is set and in pass two if xsw
32 is set. Processing may be done explicitly by the primitive

#{ kwcheck; cl ass- expr; code- expr}

In the special case where class is negative, code is interpreted as

0 Reset the keyword stack.
1 Return the depth of the keyword stack.

4.13 Executable Keywords

Keywords are defined to be “executable” by defining type 5 or type 6 secondary dic-
tionary entries with the “dx” primitive (Section 4.11). Such keywords will not,
however, be “executed” unless such execution has been enabled for the current en-
vironment (Section 4.21).

When keyword execution is enabled for a pass and a line begins with an exe-
cutable keyword appropriate to that pass (as defined by the “dx” primitive), the as-
sociated function (as specified by the “vall” argument to the “dx” function) will be
invoked as

42 PDL/81 Format Designers Reference Guide

#{func; kwstring;rest-string}

where “kw” is the keyword that caused the invocation and “rest” is the remainder
of the input line. In addition, the “.ixdcode” number register will be set to the
“code” value that was given when the keyword was defined.

If a line results in keyword execution, no other processing (including printing
during pass two) is performed on the line. All desired processing must be per-
formed by the invoked function.

4.14 Specifying Keyword Alignment
The primitive

#{kwl m | oc- expr}

specifies the leftmost position in which a keyword may be automatically placed. If
the processor attempts to place a keyword to the left of “loc”, the user-defined
function “$inderr” will be invoked.

4.15 Case Control
The primitive

#{ kwcase; setting}

specifies the case in which keywords and secondary keywords are to be printed
during structured mode formatting. The value of setting may be:

off do not change the case of the keyword
u print the keyword in upper case
| print the keyword in lower case

The primitive

#{cap;text}

returns text with each lower-case alphabetic character promoted to upper-case.
The primitive

Chapter 4: Formatting and Design Primitives 43

#{i cap; string}

returns string with the first character promoted to upper-case if it is a lower-case
letter.

4.16 Flow Figure Enhancement
The primitive

#{ kwc; char; font - expr}

specifies that the char character in the given font will be used to connect the be-
ginning and end of each flow figure. Font defaults to zero (the base font). If char is
null or blank, the mechanism is turned off.

For keywords automatically processed in structured mode, the mechanism re-
qguires that the appropriate code, as used by the keyword checking mechanism
(Section 4.12), be defined with the “dx” primitive.

The enhancement line may be manually specified with the primitive

#{ kwv; col - expr}

This pushes the col value onto a stack and the current active flow figure enhance-
ment character will be printed in that column (if the column would otherwise be
blank). A col of zero will pop the stack and a negative col will reset the stack to its
empty state.

4.17 Design Attribute Controls

This section describes the primitives which control the processing of various de-
sign attributes. This processing includes data item definition and referencing, seg-
ment definition and referencing, and treatment of labels. The primitives described
in this chapter have effect only during structured mode formatting.

The primitive

#{ddf ; setting}

controls the definition of data items. Data items consist of letters, digits, data
characters, and data special characters as described in Section 4.5. The value of
setting may be:

44 PDL/81 Format Designers Reference Guide

off do not perform data item definition

f define the first word of each source line as a data item (active during “pass1”
processing only)

d define each word which contains a data character as a data item; if the first
character of the word is a data character, however, do not consider the lead-
ing data character as part of the name of the data item (active during
“passl” processing only)

i during “pass2” processing, define each word which contains a data character
to be a data item if it has not previously been defined as a data item

If the source line begins with a keyword, the keyword and any secondary key-

words are skipped before applying the above data item definition requests.

When a word is to be defined as a data item, PDL/81 will invoke the user func-
tion

#{ $ddi ; name- stri ng; code}

where name is the name of the data item and code is “0” if the data item resulted
from a “ddf” setting of “f’, “d”, or “I” and is “1” if the data item resulted from a
“ddf” setting of “i”. It is the responsibility of the “$ddi” function to perform the ac-
tual definition by use of the “dx” primitive (see Section 4.11).

If a line begins with a comment string, data item definition is controlled by

#{cdat a; setti ng}

where a setting of “off” specifies no definition processing for such a line and any-
thing else specifies that definition processing is to be performed according to the
current “ddf” setting.

Collection of references to data items occurs during “pass2” processing and is
controlled by

#{drf;setting}

where setting is “off” if collection is not desired. Any other setting will result in
data item reference collection. References are only collected if structured format-
ting mode is specified. An initial keyword and any following secondary keywords
will be skipped before collecting references. The page and line numbers for the
reference are taken from the values of the “.page” and “.stanr” built-in number
registers, respectively (see Section 9.4). Regardless of the “drf” setting, data item
references will not be collected if the value (initially zero) of the “.xrsw” built-in
number register is zero.

The primitive

Chapter 4: Formatting and Design Primitives 45

#{sdf ; setting}

controls automatic definition of segment names. If setting is “off’” automatic
definition is not performed; otherwise, each line is considered to be the definition
of a segment. The name of the segment begins following any initial keyword and
secondary keywords and extends to the end of the line or to the first comment
string. Leading and trailing blanks are deleted and each sequence of imbedded
blanks is replaced by a single blank. If the line begins with a comment string,
definition is controlled by the current “cdata” setting.

PDL/81 requests the definition by invoking the user function

#{$dseg; nane-string; line-string}

where name is the name of the segment and line is the source line that caused the
invocation. It is the responsibility of the “$dseg” function to perform the actual
definition by use of the “dx” primitive (see Section 4.11).

During “pass2” processing, collection of references to segments is controlled by
the primitive

#{srf;l oc-expr;w dth-expr}

If loc is zero, collection is not performed. Otherwise, each line (following any ini-
tial keyword and secondary keywords) is scanned for a possible reference to a seg-
ment. If a reference is found, an entry is made in the cross-reference data base for
use in generating a segment index (see Section 4.27). In addition, the page num-
ber of the definition of the segment is placed right adjusted in a field of width
characters starting at the position given by loc. The page and line number of the
reference are taken from the values of the “.page” and “.stanr” built-in number
registers, respectively (see Section 9.4). Regardless of the “srf” setting, references
to segments will not be collected if the value (initially zero) of the “.xrsw” built-in
number register is zero.

The primitive

#{1 bl ; char ;i ndent - expr}

specifies that if the first word of a source line ends with the single character char,
the word is considered to be a label. Label detection is disabled if char is null. A
line beginning with a label is printed starting at the position given by indent. If
indent is null, the line is printed flush against the current left margin; otherwise,
indent is taken as the indentation (which may be negative) of the line. The text, if
any, following the label on the line should generally be commentary.

46 PDL/81 Format Designers Reference Guide

4.18 Specifying Marginal Information
The primitive

#{snr; | oc-expr;w dt h-expr}

will cause the value of the “.stanr” built-in number register (see Section 9.4) to be
printed right adjusted in a field of width characters starting at the position given
by loc. This will be printed on each output line, but not on overflow lines produced
in nofilled or structured modes. If the value of loc is zero, these numbers will not
be printed.

The primitive

#{1 nr; 1 oc-expr;w dt h-expr}

will cause the input source line number to be printed right adjusted in a field of
width characters starting at the position given by loc. If the value of loc is zero,
these numbers will not be printed.

The primitive

#{nc; char ;| oc-expr}

will cause the character char to be printed at the position given by loc in each out-
put line which contains some text. If loc is null, it is taken to be the current right
margin plus two. If char is null, the mechanism is disabled. The character will be
printed in the font given by the “.mcfont” number register.

4.19 Explicit Reference Processing

Normally, reference processing is automatically performed during pass two. It
may be explicitly performed by the primitive

#{rf;string}

which causes segment and data item reference scans to be made on “string”.

4.19.1 Establishing a Reference Trap
The primitive

#{rtrap; function- nane}

Chapter 4: Formatting and Design Primitives 47

establishes a reference trap. Once established, the named function will be invoked
whenever a reference is being collected by the “rf” primitive or under control of the
“Srf” processing mode (Section 4.17). Once established, the trap will be in effect
until cancelled by a call on “rtrap” without a function name.

When the trap function is invoked, it will be given two arguments:

1. The name of the segment being referenced; and
2. The entire source line containing the reference.

In addition, the built-in number register “.ixdpage” is set to the page containing
the definition of the segment and “.ixdline” is set to the line number of the
definition.

4.20 Environments

PDL/81 contains twenty environments which are used to contain many of the for-
matting parameters. The user can switch between these environments during
processing. Thus, for example, one environment can have the proper settings for
flowing and justified text, another can have settings for processing flow segments,
etc. The environments are numbered zero through nineteen and each initially
contains the various default settings described in this manual.

At the start of the processing phase (just before “$start” is called) the current
environment is set to “one”. Processing can be switched to a new environment by

#{ envs; en-expr}

where en is the number of the desired environment.

The current environment can be pushed down and a new environment can be
established by

#{ env; en- expr}

where en is the number of the desired new environment. If en is null, the environ-
ment stack is popped and the previous environment is restored.

If the current environment is zero and a line is encountered which contains
text (after any possible function expansion), the user function

#{ $evOt xt ; 0}

is invoked. An entirely empty (or blank) line in environment zero will invoke

48 PDL/81 Format Designers Reference Guide

#{ $evOt xt ; 1}

This function might, for example, handle design text outside of a segment by issu-
ing an error message, creating a dummy segment, and issuing the “backup” primi-
tive (see Section 3.7.4) to reprocess the line.

The “.envnr” built-in number register always contains the current environ-
ment number.

The “env” and “envs” primitives force a line break (see Section 4.6).
The various parameters stored in an environment are:

« blank line mode (“bll” primitive) [default = keep]
« box mode and characters (“box” primitive) [default = no box]

« margin character and position (“mc” primitive) [default = no margin charac-
ter]

» keyword case setting (“kwcase” primitive) [default = off]

- keyword font setting (“kwfont” primitive) [default = base font]

- data item definition mode (“ddf” primitive) [default = off]

- data item reference mode (“drf” primitive) [default = off]

- formatting mode (“fmt” primitive) [default = off]

- tab width (“tabw” primitive) [default = 4]

« indent value and previous indent value (“in” primitive) [default = 0]
« temporary indent value (“ti” primitive) [default = 0]

« imbedded spaces mode (“isp” primitive) [default = keep]
 justification mode (“just” primitive) [default = off]

« cdata mode (“cdata” primitive) [default = off]

« label character and position (“Ibl” primitive) [default = no label character]
« left margin and previous left margin (“Im” primitive) [default = 1]

- right margin and previous right margin (“rm” primitive) [default = page
width]

« line number mode, position, and width (“Inr” primitive) [default = off]

« leading spaces mode (“Isp” primitive) [default = keep]

- segment definition mode (“sdf” primitive) [default = off]

- statement number mode, position, and width (“snr” primitive) [default = off]
» space OK mode (“spcok” primitive) [default = yes]

« segment reference mode, position, and width (“srf” primitive) [default = off]
- extra line spacing (“els” primitive) [default = 0]

« keyword left margin warning mode and position (“kwlm” primitive) [default
= off]

Chapter 4: Formatting and Design Primitives 49

« the x switch values (Section 4.21) executable keyword activation mode
("kwx” primitive) [default = off]

4.21 Switch Manipulation Primitives

There is an environment value, known as the x switch (or xsw) which can hold up
to 16 switches. These are manipulated by the primitives

#{ xswn; expr}

which turns on each switch that corresponds to a one-bit in expr,

#{ xswf ; expr}

which turns off each switch that corresponds to a one-bit in expr, and

#{ xsw}

which returns the current xsw value. The value of xsw is saved in the PDL/81 en-
vironment.

The currently defined switches are:

0x0001 enable executable keyword detection in pass one
0x0002 enable executable keyword detection in pass two
0x0004 enable complexity processing in pass one
0x0008 enable complexity processing in pass two
0x0010 enable flow-figure checking in pass one

0x0020 enable flow-figure checking in pass two

0x0040 enable Ada label handling

4.22 Saving and Restoring the State of the Formatter
The primitive

#{fnm save}

will stack the current state of the formatter, except for the current environment
and its contents, but including the current partially constructed output line. The
primitive

50 PDL/81 Format Designers Reference Guide

#{fntrestore}

will restore the state of the formatter, except for the current environment, to the
state just before the last “fmtsave”.

4.23 Text Diversions

A diversion is a named place in which to temporarily place formatted output in-
stead of printing it. Diversions are normally used to measure the vertical extent
of some text so that such things as whether or not it will fit in the remaining space
on the current page can be determined.

The primitive

#{ di ; nane}

opens the diversion named name and causes all formatted output to be placed into
it. If the diversion already has text in it, the new output is appended. If output is
being diverted when the “di” primitive is encountered, the previous diversion is
first closed. If name is null, the current diversion is closed.

When a diversion is closed, a count of the number of lines in the diversion is
placed in the “.dline” built-in number register.

While output is being diverted, all normal formatting is performed. However,
since the vertical position on the page is not changed, heading and footing traps
will not be sprung.

The contents of a diversion is printed by the primitive

#{rdi ; nane}

where name is the name of the diversion. The contents of the diversion will be
read and printed — no formatting is done since that was accomplished while the
diversion was being made. The vertical page position is tracked during printing of
a diversion so that heading and footing traps will be handled normally. If there is
an open diversion during “rdi” processing, the contents of the diversion being read
will be diverted again instead of being printed.

4.24 Final Output Diversion

The final, completely formatted, and paginated output from PDL/81 is sent to a
file known as the “final output file”. Normally, this is the UNIX “standard
output”. The current final output file may be redesignated by the primitive

Chapter 4: Formatting and Design Primitives 51

#{df o; f n-expr}

where fn is an auxiliary file number as described in Section 3.7.2. If the fn argu-
ment is absent, “standard output” will again become the final output file.

The contents of an auxiliary file may be copied to the current final output file
by the primitive

#{cfo; fn-expr;text}

Normally, no formatting or other processing is done during this operation — it is a
strict copy. However, if the text argument is not null, it is taken to be an escape se-
guence which may trigger special processing while the diverted final output is be-
ing processed.

Each line of the diverted output is examined to see if it begins with the
specified escape sequence. If it does, the characters on the line following the es-
cape sequence, up to the first non-alphanumeric, non-punctuation character, are
taken to be the name of a function. Any white space is then skipped and the rest
of the line, if any, is taken to be an argument to the function which is then in-
voked.

The function may perform any desired processing. In practice, it will normally
output exactly one line which will replace the triggering line in the final output.

4.25 Definition and Referencing of Tags

A tag is a named entity which may be used for marking a point in formatted out-
put for purposes of referring to that point in the text. The tag mechanism sup-
ports both forward and backward referencing.

A tag is defined or redefined by

#{dt; nanme; stringl;string2;string3;string4}

where name is the name of the tag and the strings are arbitrary strings. The oper-
ation of “dt” is:

1. If name is not the name of a previously defined tag, it is defined as a tag, the
four strings are associated with the definition, and the primitive returns a
null value.

2. If it has been previously defined, and if the definition occurred in the same
processing phase (“passl”, “pass2”), “dt” returns “1” and associates the four
strings with the definition.

3. If it has been previously defined in a different processing phase, the primi-
tive returns a null value and, if the strings are not the same as those saved
with the previous definition, the value of the “.tagerr” built-in number regis-
ter (initially zero) is incremented by one. In either case the strings are asso-

52 PDL/81 Format Designers Reference Guide

ciated with the definition.

The strings associated with a tag may be retrieved by

#{tv; nane; expr}

where name is the name of the tag and expr should be zero through three to re-
trieve strings one through four, respectively. The selected string is returned as
the value of the primitive. If the tag is undefined, it will be defined and the two
strings will be the name of the tag promoted to upper case.

All of the defined tags are retrieved by

#{t ags; f unc- nane}

where func is the name of a function to be executed for each tag. The tags will be
presented in sorted order and each call on func will have the form

#{func; nane; code; stringl;string2;string3;string4}

where name is the name of the tag, code is “1” if the tag was not defined by the
“dt” primitive or “0” if it was so defined, and the strings are the four associated
strings.

WARNING

Once the “tags” primitive has been invoked, further use of the “dx”,
“sx”, “di”, “rdi”, “dt”, and “tv” primitives will cause unpredictable re-
sults.

4.26 Printing Design Trees
Printing of design trees is initiated by

#{trees; root-func; node-func; end-func}

where root is the name of a function to be called for each tree root; node is the
name of a function to be called for each node of a tree; and end is the name of a
function to be called after all trees have been processed. The “trees” primitive re-
turns the number of trees which were processed (i.e., the number of roots found).
There will always be at least one root unless there were no flow segments.

Chapter 4: Formatting and Design Primitives 53

WARNING

Once the “trees” primitive has been invoked, further use of the “dx”,
“sx”, “di”, “rdi”, “dt”, and “tv” primitives will cause unpredictable re-
sults.

The information necessary to produce the trees will not be collected unless the
value (initially zero) of the .xrsw built-in number register is non-zero during
“pass2” processing.

The processing of each tree begins with a call on the root function specified in
the “trees” primitive. It is called as

#{root - f unc; name}

where name is the name of the segment which corresponds to the root of the tree.

When it is time to print a tree node, the node function specified in the “trees”
primitive is called as

#{ node- f unc; code; nane}

where name is the name of the segment corresponding to the node and code is one
of

this is a normal tree node

1 this node corresponds to a branch of the tree that has previously been
printed. This code is used only if the value (initially zero) of the “.stree”
built-in number register is non-zero.

2 this node is the start of a branch that has previously been printed and which
is on the same path from the root — this indicates a recursive reference

When the node function is called, the following built-in number registers will have
the values shown:

grinr contains the tree line number for this node. Tree line numbers start at
one for each tree and are useful for making backward references for
code 1 and code 2 nodes.

trievel contains the nesting level of the node. The root of the tree is at level
zero.

.trpage contains the page number on which the segment for this node was
defined.

.trshort contains, for codes 1 and 2, the tree line number of the line where this
branch was previously printed.

If any roots were detected, the end function specified in the “trees” primitive is

54 PDL/81 Format Designers Reference Guide

called as

#{ end}

at the conclusion of tree processing.

4.27 Data Item and Segment Indexes
The printing of a data item or flow segment index is initiated by

#{i ndex; type-expr;start;entry;ref;line;end}

where type should have the value 3 for a flow segment index or 4 for a data item
index and the other arguments are names of functions to be called at appropriate
points during index processing. After producing the index, the “index” primitive
returns a count of the number of entries in the index.

WARNING

Once the “index” primitive has been invoked, further use of the “dx”,
“sx”, “di”, “rdi”, “dt”, and “tv” primitives will cause unpredictable re-
sults.

Upon encountering the first index entry, the start function specified by the “index”
primitive is called as

#{start}

For each index entry (i.e., segment name or data item name), the entry function is
called as

#{entry; nanme}

where name is the name of the segment or data item. At each call on the entry
function, the following built-in number registers will have the indicated values:

.ixdpage contains the page number on which the entry was defined

.ixdline contains the line number (statement number) on which the entry was
defined; by convention, a zero value means that a line number is not
applicable to this entry

Chapter 4: Formatting and Design Primitives 55

.ixdcode contains the code value assigned to this segment or data item name
with the “dx” primitive (see Section 4.11)

For each referencing segment within an entry, the ref function is called as

#{ref; nane}

where name is the name of the referencing segment. The contents of the
“.ixrpage” built-in number register will contain the page number of the reference
and the contents of the “.ixrline” built-in number register will be zero.

For each referencing line within a referencing segment within an entry, the
line function will be called as

#{1i ne}

The contents of the “.ixrpage” built-in number register will contain the page num-
ber of the reference and the contents of the “.ixrline” built-in number register will
contain the line number (statement number) of the reference.

At the conclusion of index processing, the end function will be called as

#{ end}

if there were any entries in the index.

5. Font Definition and Use

PDL/81 provides a base font and up to fourteen additional, user defined fonts.

NOTE

The font mechanism allows special device actions to be associated with
the printing of each character. However, these actions, no matter how
complex, must result in exactly one net character width of positive hor-
izontal motion and exactly zero net vertical motion per character out-
put.

5.1 Using Fonts
The primitive

#{uf; font-expr;text}

returns text with each character represented in the font given by the absolute
value of font. If font is zero, the base (i.e., normal) font is used. If font is positive,
only non-blank characters will be printed in the given font. If font is negative,
blanks will be converted to unpaddable spaces and they, along with the non-blank
characters, will be printed in the given font.

The absolute value of font should range from 0O to 14, inclusive.

Uses of the uf function may be nested. However, each use represents a switch
from the current font to the new one.

-57-

58 PDL/81 Format Designers Reference Guide

5.2 Defining Fonts

Each font may specify actions to be performed when the font is entered, for each
character printed in the font, and when the font is left.

5.2.1 Per-Character Font Action

Each of the definable fonts has an associated font control string which specifies
how a character is to be printed in that font. The control strings are normal
strings with the names *f1, *f2,, *f14 and may be defined by

#{ds; *fn;control -string}

wherenis 1, 2, ..., 14.

A control string acts as a template for printing of one character in the associ-
ated font. Each character in the string is sent to the final output file, except that
the character “#” will be replaced by the character to be printed in this font. The
sequence “\#” will result in the output of a literal “#”.

As an example, defining
#{ds; *f1; #{sneak; 008} #}

will cause each character printed in font 1 to be printed as an underscore. fol-
lowed by a backspace, followed by the character. Thus, the function

#{uf; 1; some text}

will result in “some text” being underscored on output.

The following may be used to define a “us” primitive to provide underscoring of
non-blank text and a “uc” primitive to provide underscoring of all text:

#{ds; us; {#{uf; 1, #1}}}
#{ds; uc; {#{uf;-1;#1}}}

As another example, consider defining font 2 to produce “bold face” output. One
way to do this on a normal printer would be to overstrike each character twice as
in

#{ds; *f 2; #{ sneak; "’ #; "h; " #; "h;’ #}}

The notation “~h” results in the low-order five bits of the character “h”, thus sup-
plying an ASCII backspace (see Section 2.5.1). The function

#{ds; bf ; {#{uf; 2; #1}}}
could then be defined so that
#{ bf; some text}

would print “some text” in bold face.

Chapter 5: Font Definition and Use 59

Some output devices allow complicated device motions to be performed for
each character. On these, bold face printing might be done by printing the charac-
ter more than once with a slight offset between each instance. If this is done, re-
member that the net horizontal motion must be exactly one character width and
that there must be no net vertical motion. Also, note that a sequence which gives
desirable results on one device may result in horrible looking output on another
device. Results depend heavily on the choice of type face, the ribbon, the paper,
and the “state of tune” of the particular device.

As a final example, consider a requirement for printing “some text” bold face
and underscored. The form
#{us; #{ bf ; some text}}

will not work, since it would enter font 1 and then immediately switch to font 2,
thus resulting in bold face output without underscores. The solution is to define a
new font to produce the desired result:

#{ds; *f 3; #{sneak; ' _; " "h}#{*f2}}
The function
#{ds; bf u; {#{uf; 3; #1}}}

can then be defined for printing bold face, underscored text.

5.2.2 Actions on Beginning and Ending a Font

In addition to the per-character control strings discussed in Section 5.2.1, the
strings *flb, *f2b, ..., *f14b act as “begin font” control strings and the strings *fle,
*f2e, ..., *fl4e act as “end font” control strings. When a sequence of one or more
characters is to be printed in a given font, the contents of the corresponding “begin
font” control string is output, each of the characters is output under control of the
corresponding per-character control string, and the contents of the corresponding
“end font” control string is output.

As an example, some video display terminals have an “underline” mode which
is entered with the escape sequence

A &dA
and terminated with the escape sequence
" &d@

where “~[” is the ASCII escape character (octal value 033). To define font 1 (the
usual underscore font) to use this mode, the definitions

#{ds; *f 1b; #{ sneak; [} &dA}

#{ds; *f 1; #}

#{ds; *f le; #{sneak; "} &A@
could be used. Then,

#{uf; 1; some text}

60 PDL/81 Format Designers Reference Guide

would cause “some text” to be displayed on the terminal using the terminal’s un-
derline mode.

5.3 Initial Font Definitions

When PDL/81 is started, font 1 is initialized as shown above so that each charac-
ter in this font prints as “underscore, backspace, character”. The remaining fonts
all have null control strings.

Printing of characters in an undefined font or in one defined to have a null con-
trol string is equivalent to printing in the base font.

5.4 Selecting Keyword Fonts
The primitive

#{ kwf ont ; n}

specifies that keywords are to be printed in font n.

5.5 Miscellaneous Font Control Primitives
The primitive

#{defont; text}

returns text with all font change information removed.
The primitive

#{ups; text}

returns text with each blank replaced by an unpaddable space.

5.6 Explicit Keyword Enhancement

Keyword enhancement (i.e., display is special case and font) is normally an auto-
matic function of pass two processing. It may be performed explicitly by the primi-
tive

#{ enhance; stri ng}

which returns “string” in the currently prevailing keyword case and font.

6. Regular Expression Processing

PDL/81 supports a means of scanning and processing regular expressions similar
to those which are handled by many of the utilities found in the Unix operating
system. Primitives are provided to determine if a string matches a regular expres-
sion and to extract specified substrings of a matched string.

6.1 Scanning for Regular Expressions
The primitive

#{rxs;re-string;source-string}

determines if the “source” string, or any substring of it, matches the regular ex-
pression given by “re”. It returns “1” if it matches and “0” if it does not match. If
the “source” argument is absent, the “source” string provided in the most recent
previous call on “rxs” is scanned again.

A regular expression is made up of the following characters and character se-
quences:

A period (.) matches any character.

The apostrophe (') is the “escape character”. If followed by any character
other than a digit (0-9), it matches that character.

3. The form [s], where “s” is non-empty, matches any character in the string
“s”. The form [~s], where “s” is non-empty, matches any character not in “s”.
The character $ as the last character in either “s” matches the end of the
source string. In either of these “character class” forms, a substring of the
form “a-b” matches any character in the inclusive ASCII character range “a”
through “b”.

Any other character except “(” and “*” matches itself.

5. Any of the above followed by “*” matches zero or more matches of the regu-
lar expression.

-61 -

62 PDL/81 Format Designers Reference Guide

6. A regular expression of the form “(x)” matches whatever “x” matches. Such
an expression is known as a group.

7. The form * n”, where “n” is a digit (1-9), matches a copy of the string that
group “n” matched.

8. A regular expression “xy” matches the longest “x” such that a match for “y”
is still possible.

9. ~ as the first character of a regular expression matches the beginning of the
source string.

10. $ as the last character of a regular expression matches the end of the source
string.

In the absence of a leading “~” or trailing “$”, the longest, leftmost substring of the
source string that matches the regular expression will be chosen.

6.2 Extracting Matched Substrings
The primitive

#{rxg; group- expr}

will return the specified portion of the last string scanned with the “rxs” primitive.
The possible “group” values are

0 the entire matched substring
1-9 the substring that matched the specified group (1-9)

6.3 Input Scanning With Regular Expressions
The primitive

#{ ski p; r egex}

will cause input lines to be skipped until a line is encountered which matches the
regular expression. Normal processing will then be resumed with the matched
line being rescanned in the normal mode.

The primitive

#{cpf; regex; fn-expr}

will cause input lines to be copied to the output file specified by the “fn” expression
until a line which matches the regular expression is encountered.

7. Escape Functions

At various points during processing, PDL/81 will call certain user-defined func-
tions. Collectively, they are known as escape functions. These functions are de-
scribed at appropriate points in previous chapters. If a particular escape function
has not been defined, its invocation is ignored.

This chapter summarizes the escape functions and their usage:

$dev-xxx

$ddi

$dseg

$start

$end
$evOtxt

$pp

$inderr

called at the end of the definition phase. xxx is the device name
specified at invocation or is “default” if a device is not specified.

invoked when a data item definition is encountered. The general form
IS

#{ $ddi ; nane; code}
where code is “1” if this is an implicit data item definition and is “0”
otherwise.
invoked when an automatic segment definition is encountered. The
general form is

#{ $dseg; nare; | i ne}}
invoked at the beginning of the processing phase. In fact, whatever
this function does is the processing phase.
invoked upon return from the “$start” function.

invoked if a line is not empty, after any requested function expansion,
and the current environment is number zero.

invoked for each blank line if the blank line mode has been set to “a”
by the “bll” primitive.

invoked if the “kwlm” primitive has set a keyword left margin in the
current environment and indentation to the left of that value has just
been requested.

-63 -

8. Special Strings

There are a few named strings which have special interpretations during PDL/81

processing.
here:

*bu

*f1b, *f2b, .
*f1, *f2, ...,
*fle, *f2e, .

*gon

*eol

They have been described in previous chapters and are summarized

contains the output sequence to print the bullet character. For exam-
ple, the bullet will be printed as a plus sign superimposed on a “0” if
the definition

#{ds; *bu; o#{sneak; 010} +}

is given. In order to maintain proper output alignment, the contents of
the “*bu” string must occupy only a single character position when ac-
tually printed.

., *f14b
begin-font control strings (Chapter 5).

*f14
per-character font control strings (Chapter 5).

., *fl4e

end-font control strings (Chapter 5).

contains the sequence to put the output device into “graphics” or “fine
resolution” mode if needed during line justification (see Section 4.6.1).
For example, the definition

#{ds; *gon; #{sneak; 033; ' 3}}

can be used with a Diablo 1620.

contains the sequence to turn off “graphics” mode. For example, the
definition

#{ds; *gof f; #{ sneak; 033; "’ 4}}

can be used with a Diablo 1620.

contains the sequence of characters to be output at the end of every
printed line. If this string is not defined, a newline is postpended to
each printed line.

- 65 -

66 PDL/81 Format Designers Reference Guide

*bol contains the sequence of characters to be output at the beginning of
each printed line. If the string is not defined, nothing special is output.

9. Built-In Number Registers

Most of the various built-in number registers have been described in previous
chapters. This chapter describes those not described elsewhere and summarizes
the others.

9.1 Command Control Registers

These number registers control various aspects of command recognition and pro-
cessing:

.cmdarg if set to “1”, detection of arguments on command lines is enabled and
leading spaces are removed from each argument; if set to “2”, the
treatment is the same, except that leading spaces are not removed
from arguments other than the first

.cmdcall if set non-zero, detection of the “#{” sequence is enabled during com-
mand line collection

.cmderr if set to “1”, an undefined command name detected during “passl” pro-
cessing will result in an error message; similarly, if set to “2” during
“pass2” processing

9.2 Date and Time Registers

The values of the number registers described in this section are set from the cur-
rent date and time of day when PDL/81 is invoked. If the host operating system is
unable to supply a particular value, the register will be set to a value of zero. The
date number registers are:

.month the current month, with January being “one”

.mday the day of the month, starting at “one”

.wday the day of the week, with Sunday being “one”

.yday the day of the year, with the first day of January being “one”
.year the year minus 1900

The time of day number registers are:

-67 -

68 PDL/81 Format Designers Reference Guide

.hour the hour (0 - 23)
.min the minute (0 - 59)
.sec the second (0 - 59)

9.3 Output Control Registers
These number registers control various aspects of the formatted output:

.cwidth set to the width of an output character in output device basic units.
Used to control fine-resolution justification (see Section 4.6.1). Initially
has a value of “one” which means normal justification.

.noff set to non-zero to prevent PDL/81 from generating form feed charac-
ters in the output. Initially set to zero which means that PDL/81 is al-
lowed to generate form feed characters in the output.

.notab set to non-zero to prevent PDL/81 from generating horizontal tab char-
acters in the output. Initially set to zero which means that PDL/81 is
allowed to generate tab characters in the output.

.nobs set to non-zero to prevent PDL/81 from generating backspace charac-
ters in the output. Initially set to zero which means that PDL/81 is al-
lowed to generate backspace characters in the output.

.po set to the number of character positions by which each output line is to
be indented, thus shifting the output page a constant amount to the
right. Initially has a value of zero.

9.4 Cross Reference Control Number Registers

These number registers control various aspects of cross-reference collection and
processing:

.page should contain the current page number if the selective printing option
is used or if any of the cross referencing modes (“drf”, “srf”) are en-
abled. The manipulation of this number register is entirely up to the
user — PDL/81 never modifies its value (initially zero).

.stanr incremented by one just before performing “passl” or “pass2” process-
ing on an input line. It normally is considered to hold the current seg-
ment statement number and normal practice would be to set its value
to zero at the start of each segment.

Xrsw set to non-zero to allow collection of reference information under con-
trol of the “drf” and “srf” primitives. The initial value of zero inhibits
such collection.

9.5 Tree Registers

These number registers control tree collection and provide information about a
tree which is being displayed:

.Stree set non-zero to print short trees; zero to print long trees

Chapter 9: Built-In Number Registers 69

trlevel holds level of current node

trinr holds line number of current node

.trpage holds page number of current node definition

.trshort holds line number of line where node was printed previously

9.6 Indexing Registers
These number registers provide information about an item being indexed:

.ixdcode holds code for current index entry

.ixdpage holds page number of definition of current entry
.ixdline holds line number of definition of current entry
.ixrpage holds page number of current reference

.ixrline holds line number of current reference

9.7 Tag Related Registers
This number register provides information about tags:

.tagerr holds the count of the number of tags whose second definitions are dif-
ferent from their first definition

9.8 Font Control Registers
These number registers control the font for printing certain information:

.boxfont font to print box drawing characters
.mcfont font to print marginal character

9.9 Informational Registers
These number registers provide general-purpose information:

.envnr number of current environment
.ixcmplx complexity value for current keyword
.axdval3 value from “val3” for current item
.axdval4 value from “val4” for current item

.ndefl count of the number of lines in definition files

.nsrcl count of the number of lines in source files

.ndict count of the number of primary and secondary dictionary entries made
.nivb count of the number of internal string storage units allocated

.nfivb count of the number of internal string storage units which were once

allocated but are now free

10. Examples of Use

This chapter presents a number of examples which illustrate how certain format-
ting objectives can be reached by use of the Format Definition Language. There
are usually a number of ways to reach a desired objective. Generally, only one of
the many possibilities will be illustrated.

The examples presented here are mostly just outlines of the definitions that
would be necessary to fully handle the desired objective. The best source of com-
plete examples is any of the definition files distributed with PDL/81.

10.1 Defining the Processing Structure

On completion of the definition phase, PDL/81 invokes the “$start” function which,
presumably, has been defined during that phase. It is the purpose of the “$start”
function to cause processing of the source document.

For two-pass processing, such as for a design document, the function should be
at least

#{ds; $start; {\
#{if; #{eq; #{source}}; {\
#{qui t;no source file given}\
H

#{ passl; #{source} }\
#{ pass2; #{source} }\

H}

where the following should be noted:

« The first call (on “if”) causes processing to terminate immediately if there
was no source file specified.

« The body of the “$start” function and of the true-branch of the “if” are en-
closed in brackets so that the imbedded function calls will occur during exe-
cution.

For one-pass processing, such as a manual or report, a simpler definition such as

-71-

72 PDL/81 Format Designers Reference Guide

#{ds; $start; {\
#{ pass2}\

may be used.

10.2 Obtaining Printable Dates
First, obtain the name of the current month by

#{ds; mane; #{ case; . nont h; ; January; February;\
Mar ch; Apri | ; May; June; Jul y; August ; \
Sept enber ; Cct ober ; Novenber ; Decenber\

1}

The three-character name of the month can then be obtained by
#{ds; mane3; #{substr; 1; 3; #{ mane}}}

From these, the string “date” can be defined to obtain the date in the form 20
September 1986 and the string “date3” can be defined to obtain the date in the
form 20 Sep 86. The definitions for these strings are

#{ds; dat e; #{. nday} #{mmane} 19#{.year}}
#{ ds; dat e3; #{. nday} #{mmane3} #{.year}}

10.3 Establishing Page Headings and Footings
The definitions

#{ head; $$head}

#{ ds; $$head; {\
#{env; 10}\
#{nr; . page; +1}\
#{sp; 2}\
#{tt|; DRAFT, ; #{ dat e3} }\
#{sp; 3}\
#{env}\
#{ spcok; no}\
H

will cause each page to begin with two blank lines, followed by a header consisting
of the word “DRAFT” left adjusted and the date (assuming the definitions of Sec-
tion 10.2) right adjusted. The header is followed by three blank lines. Note the
following in this example:

« The body of the “$$head” definition is enclosed in left and right brackets. If
this were not done, the function calls would be executed at the time of the
definition and not when the “$$head” function is invoked.

« The header is processed in an environment of its own. Presumably, the left
and right margins in this environment have been established where desired
for headers. Thus, the processing state which existed at the time of the trap
will not interfere with the desired format of the header.

Chapter 10: Examples of Use 73

« The page number (.page number register) is incremented.

« The “spcok” mode is set to inhibit spacing on the new page until some text is

printed.

In a similar manner

#{f oot ; $$f oot ; - 6}

#{ds; $$f oot ; {\
#{env; 10}\
#{sp; 2}\

#{ttl;;- #{.page} -}\

#{env}\
}}

will place a footing trap six lines from the bottom of the page. The footing will con-
sist of two blank lines followed by a line with the page number centered and sur-

rounded by dashes.

10.4 Formatting a Flow Segment

Suppose it is desired to process flow segments in the same general style as that
used in PDL/74. First, it is necessary to choose an environment, say number 5,
which will be used for flow segments and to initialize it:

#{ envs; 5}
#{I m 11}

#{rm 103}
#{snr; 7, 3}

#{bl | ; renmove}
#{1 sp; renove}
#{i sp; conpact }
#{fm;s}
#{srf; 2; 3}

#{drf; on}
#{ddf ;inmplicit}

#{ kwcase; of f }
#{ kwuscr ; on}
#{1bl;:}

(switch to environnment 5)
(left margin at colum 11)
(right margin at colum 103)
(statenent nunbers in
colum 7, 3 wide)
(renmove bl ank |ines)
(renove | eadi ng spaces)
(conpact i nbedded spaces)
(use structured formatti ng node)
(col l ect segnent references,
putting page ref
in colum 2, 3 wide)
(collect data item definitions)
(make inplicit data
item definitions)
(don’t change case of keywords)
(under score keywords)
(: is label character, print
at left margin)

Then, “%s” command needs to be defined. For the first pass, this could be some-

thing like

74 PDL/81 Format Designers Reference Guide

#{ds; 1s; {\

H}

#{if; #{dx; 3; #{ nane; #1}; ; . page; 0}; {\
#{error; duplicate segnent name}\
H

#{nr;.stanr; 0}\
#{nr; . page; +1}\
#{envs; 5}\

and for the second pass, something like

#{ds; 2s; {\

H}

#{ bp}\

#{envs; 5}\

#{fm #1}\

#{sp}\

#{sx; #{ nane; #1} }\
#{stuff; 1; REF}\

#{br}\

#{stuff; 1; PAGE}\

#{box; 6; #{ $wi dt h} - 1; *}\
#{nr;.stanr; 0}\

On completion of the segment, it will be necessary to issue

#{ ebox}

Note that the definitions shown here are only an outline of the needed operations.
Such things as error detection, table of contents contribution, and interactions

with other segment types have not been handled.

10.5 Table of Contents Handling

Almost any style of table of contents can be produced automatically with PDL/81.

The general scheme is:

1. When an item is to be placed into the table of contents, use the “send” primi-

tive to write a call on a function into a temporary file.

2. When the table of contents is to be printed, use the “rcv” primitive to read
the file, thus executing the function calls which were previously written out.

As an example, consider producing a simple single-level table of contents. To put

something in the table of contents, call

#{tocsend; t ext ; page-nr}

where “tocsend” is defined as

#{ds; t ocsend; {\

H}

As processing continues, temporary file number one will contain lines of the form

#{send; 1; {#{tocl i ne; #1; #2} } }\

Chapter 10: Examples of Use 75

#{tocline;text; page-nr}
When it is desired to print the table of contents, execute
#{rcv; 1}

which will cause each of the calls on “tocline” to be executed.
The “tocline” function might be something like

#{ds; tocline; {\
#{rstuff; #{ $w dt h}; #2}\
#{fm #1}\

H

This should, of course, be done in an environment with attributes appropriate to
the table of contents. For example, one would normally want the right margin to
be somewhere to the left of the page boundary so as to assure there is space for
the page number.

The “rstuff” function, used above, just prints its second argument right ad-
justed in a field ending at the column given by its first argument. It might be
defined as

#{ds;rstuff; {\
#{stuff; (#1)-#{w dt h; #2} +1; #2}\
}}

10.5.1 Printing an In-Line Table of Contents

The method of printing a table of contents as outlined above will result in the ta-
ble being printed at the end of the document. By use of the “dfo” and “cfo” primi-
tives, and at the expense of additional processing time, the table can be printed in
its accustomed place at the front of the document. The general method is:

1. Process any introductory material, such as a title page, with the final output
file being left at its default assignment of the “standard output”.
2. Before starting to process the body of the document, divert the final output
to an auxiliary file, e.g.:
#{df o; 3}}
3. While processing the body, collect table of contents entries onto another aux-
iliary file as outlined above.
4. When finished with the body, return the final output file assignment to
“standard output” by:
#{ df o}

and print the table of contents as outlined above. At this point, the standard
output will contain the introductory material, followed by the table of con-
tents.

76 PDL/81 Format Designers Reference Guide

5. Finally, copy the previously diverted body to the standard output by:

#{cfo; 3}}

10.6 Index Handling

Full support for automatically collected data item and flow segment indexes is
supplied by the “index” primitive (see Section 4.27). This section describes an al-
ternate mechanism for creating word and phrase indexes such as the one found at
the end of this manual.

Items for such an index are collected by defining a specific command, say “%ix”
which enters its argument into the index. The item is entered by writing a func-
tion call onto a keyed temporary file with the “send” primitive. The index is for-
matted by calling the “rcv” primitive to sort, input, and execute these calls.

The “%ix” command might be defined as
#{ds; 2i x; {#{i x; #1; #{. page}}}}
where the “ix” function is defined as

#{ds; i x; {\
#{send; 2; {#{i xent ; #1; #2}}; #1}\
1}

so that executing
% x test phrase
on page 25 would be the same as executing
#{send; 2; {#{i xent ; test phrase; 25}};test phrase}
When the index is to be printed, executing
#{rcv; 2}
will cause the file to first be sorted on the phrases and then input, thus executing

each call on “ixent” in turn.

The “ixent” function can be defined to perform any desired formatting for the
index. For example, it can detect changes in its first argument so as to start new
entries in the index, capitalize the first word of each entry, and detect a change in
the first character of each entry so as to skip a blank line on the output for each
new letter of the alphabet.

10.7 Tag Handling

The tag mechanism (see Section 4.25) is used to allow referencing various places
in a document without requiring the author to know what referencing numbers
(e.g., section or page numbers) will be assigned by PDL/81. An example of such a
reference appears in the preceding sentence.

Chapter 10: Examples of Use 77

So that both forward and backward references can be handled without requir-
ing two passes for every formatting run, an auxiliary file can be associated with a
source file and the auxiliary file can contain the definitions of the tags. This file
can be read in at the start of a run and its up-to-date contents can be written back
out at the end of the run. If the definitions of a tag are changed during the run, a
message can be displayed to the effect that the document must be reprocessed if it
is desired to get correct references to tags (correctness is often not necessary while
a document is in draft form).

As an example, assume that we want to implement tags which behave as:
« The auxiliary file will have the same name as the source file with any exten-

sion replaced by an extension of “a”. For example, the source file “doc.p”
would have an auxiliary file named “doc.a”.

« Atagis to be placed into the text by the command
% ag nane
where name is the name which will be used to refer to the point of the tag.

We desire that the number of the page on which the tag appears be associ-
ated with the tag.

e Atagis to be referenced by
#{ref; nane}

where name is the name of the tag. This function is to return “page n” where
n is the page number associated with the tag.

At the start of a run, the auxiliary file must be input if it exists. This can be done
by the function

#{ ds; get aux; {\
#{if; #{access; #{auxnane}}; {\
#{i ncl ude; #{ auxnane} }\
H
H
where auxname has been defined as
#{ds; auxnane; #{ base; #{ source}}. a}
The “%tag” command can be implemented as
#{ds; 2t ag; {\
#{if; #{dt; #1; page #{.page}}; {\
#{error;duplicate tag: #1}\
H
H
The “ref” function can be implemented as
#{ds;ref; {#{tv; #1;0}}}

which will return the string associated with tag by the “%tag” command. Thus,

78 PDL/81 Format Designers Reference Guide

#{ref; testing}

will return “page 25” if testing had been previously defined (on page 25) and will
return TESTING if the tag had not been previously defined. Of course, previous
definition includes the case of being defined at a following point in the document

as long as the definition had been placed in the auxiliary file by a preceding run of
PDL/81.

At the conclusion of the run, the “dumpaux” function should be called. It can
be defined as

#{ ds; dumpaux; {\
#{ open; 9; #{ auxname} }\
#{tags; dunpt ag}\
#{cl ose; 9}\
#{if;. tagerr; {\
#{error; One or nore tags are wong. }\
H

H}

The “dumptag” function, which is called automatically for each tag, is just

#{ ds; dumpt ag; {\
#{if;#2; {\
#{error;undefined tag: #1}\
F AN
#{send; 9; \ #\ {dt\; #1\; #3\} }\
H

H}

Note the use of the escaped special characters in the call on the “send” primitive
in the “dumptag” function. This is necessary since the file is a non-temporary file
and the internal encoding of the special characters cannot be saved from run to
run of PDL/81 (see Section 3.7.2).

A. Error Messages

This Appendix lists all of the error messages which may be issued by PDL/81.
Note that error messages may also be issued by the “error” and “quit” primitives.
Error messages are displayed on the standard error file. If applicable, the mes-
sage is prefixed with the name of the current input file and the current line num-
ber within the file.

A.1 Non-Terminal Error Messages

The error messages described in this section do not cause termination of PDL/81
processing:

CFO: REQUESTED FILE NOT AVAILABLE - the file specified in a call on
the “cfo” primitive is not open.

DEL: CAN'T DELETE PERMANENT ITEM — an item named in a call to the
“del” primitive has a period as the first character of the name.

DS: NAME IS NOT THAT OF A STRING - the item being defined in a call
on the “ds” primitive exists but is not the name of a string.

DUP: CAN'T CHANGE TYPE OF PERMANENT ITEM - the item named in
the second argument of a call on the “dup” primitive exists, has a name be-
ginning with a period, and has a different type than that of the item named
in the first argument.

INVALID CHARACTER IN LINE - an input line contains an ASCII control
character other than “tab” or “newline”.

NR: NAME IS NOT A NR - the item being defined in a call on the “nr” prim-
itive exists but is not a number register.

TEXT IN DEFINITION FILE - after any indicated expansion, a line in a
definition file was not empty.

UNBALANCED BRACKETS - the number of unescaped left brackets is not
equal to the number of unescaped right brackets in the line.

UNKNOWN COMMAND - a command name is not defined and the
“.cmderr” number register is set to detect and report on this.

-79-

80 PDL/81 Format Designers Reference Guide

A.2 Terminal Error Messages

The error messages described in this section cause immediate termination of
PDL/81 processing:

BCOPY: INVALID META CHARACTER - this is an internal processing er-
ror and should not occur. If it does occur and is repeatable, report it as a
possible processor bug.

CAN'T OPEN OUTPUT FILE <file name> — the “open” primitive is unable
to open the named file for output.

CAN'T OPEN TEMP FILE <file name> — the “send” primitive is unable to
open the named temporary file. The name is an internal name but is dis-
played as a possible aid in diagnosing the problem.

CANNOT ALLOCATE DYNAMIC MEMORY FOR A BUFFER - memory
was needed for an input/output buffer, but insufficient memory was avail-
able.

CFO: CAN'T COPY DIVERTED OUTPUT: <file> — the file cannot be copied
by the “cfo” primitive because it would be copied to itself since the current
final output file has been set to be the named file.

CFO: CAN'T OPEN TEMP FILE <file> — the “cfo” primitive is unable to
open the named temporary file. The name is an internal name but is dis-
played to help in diagnosing the problem.

DYNAMIC MEMORY OVERFLOW (n) — all available dynamic memory is
allocated and more is needed. The character “n” indicates the particular
point in the processor at which overflow was detected and is of interest only
to PDL/81 processor maintenance personnel.

ERRORS IN DEFINITION FILE - issued at the end of the definition phase
if any errors have been detected up to that time.

EXIT FUNCTION INVOKED — BUT NOTHING SHOULD INVOKE IT!!! —
something has invoked the so-called UNIX “cleanup exit” function, but noth-
ing in PDL/81 is supposed to invoke it. This message indicates system trou-
ble of some kind.

FOPEN: FILE DESCRIPTOR OUT OF RANGE: <file> — when the internal
PDL/81 “fopen” routine invoked the UNIX “open” routine, a file descriptor
was returned which was too large for PDL/81 to handle. This is only likely
to happen if PDL/81 is invoked with a very large number of files already
open in the invoking environment.

FOPEN: IMPOSSIBLE MODE: <file name> — something invoked the inter-
nal PDL/81 “fopen” function with a mode request not supported by PDL/81.
This message indicates some kind of system trouble.

INPUT ROLL OVERFLOW - the current state of FDL execution has re-
sulted in too many function expansions which have not yet been rescanned
by the interpreter.

INPUT STATE STACK UNDERFLOW - this is an internal processing error
and should not occur. If it does occur and is repeatable, report it as a possi-
ble processor error.

INVALID FILE NAME: <file name> — the file name in a call on the “open”
primitive is syntactically invalid.

Appendix A: Error Messages 81

INVALID META CHARACTER - this is an internal processing error and
should not occur. If it does occur and is repeatable, report it as a possible
processor error.

I/0 ERROR ON CLOSE: <code> — a permanent 1/O error has occurred while
closing a file. The UNIX error number is displayed as “code”.

I/0 ERROR ON READ: <code> — a permanent 1/O error has occurred while
reading from a file. The UNIX error number is displayed as “code”.

I/0 ERROR ON WRITE: <code> — a permanent 1/O error has occurred while
writing on a file. The UNIX error number is displayed as “code”.

LINE IS TOO COMPLEX TO PROCESS - the current input line contained
too many lexically nested function invocations.

MKTEMP: CANNOT GENERATE UNIQUE FILE NAME: <file name> —
names of PDL/81 temporary files are generated by the internal PDL/81
“mktemp” function. This function can generate up to 26 unique names for
each invocation of PDL/81. Since names will be reused when possible, and
since PDL/81 deletes temporary files after they are closed, this message usu-
ally means that a large number of temporaries were left around following a
system crash. Examine the directory given in the message and delete the
abandoned temporaries.

OPENING FILE WOULD DESTROY SOURCE FILE: <file name> — opening
the named file with the “open” primitive would cause the current source file
to be erased.

PARM ROLL OVERFLOW - function execution is too deeply nested.

PSORT: CAN'T FIND SORT!! — the sorter used by the “rcv” primitive to pro-
cess keyed temporary files cannot find the sort program. Under Unix, this
program is either /bin/sort or /usr/bin/sort. This message should not occur.

PSORT: CAN'T OPEN INPUT FILE <file name> — the named input file can-
not be opened during sort processing of the “rcv” primitive. The name will be
that of an internal file and this message normally indicates some kind of
system problem.

PSORT: CAN'T OPEN OUTPUT FILE <file name> — the named output file
cannot be opened during sort processing of the “rcv” primitive. The name
will be that of an internal file and this message normally indicates some
kind of system problem.

PSORT: UNABLE TO FORK SORT — a UNIX fork could not be created to
hold the sorter used by the “rcv” primitive. This generally means that the
system is so heavily loaded that no UNIX process slots are available.

TARGET OF -v OPTION ALREADY DEFINED: <name> — the named item
was specified as the target of a string assignment invocation option, but the
item was already defined.

TOO MANY NESTED ENVIRONMENTS - the “env” primitive has been
used to push the environment too many times without any intervening pops.

UNABLE TO OPEN <file name>— the named file cannot be opened for
input.

UNKNOWN DEVICE TYPE: <name> — the named device was specified with
an invocation option but no such device type exists.

82 PDL/81 Format Designers Reference Guide

« UNKNOWN INVOCATION OPTION: <option> - the given invocation option
IS not one recognized by PDL/81.

« UNKNOWN NAME: <function name>— an attempt was made to call the
named function but it did not exist and the quit on undefined function option
was specified during invocation.

B. List of Primitives

$depth
$file
$foot
$in
$line
$Ilm
$rm
$tabw
$width
access
as
backup
base
bll

box

bp

br

call
cap
case

cc
cdata
ce

obtain current page depth

obtain name of current input file
obtain location of footing trap

obtain current indent

obtain current line number on output page
obtain current left margin

obtain current right margin

obtain current tab width

obtain current page width

test if a file is accessible

append to string

back up current input

obtain base portion of a file name

set blank line treatment mode

start drawing a box

begin a new page

force a line break

call a function with a composed name
capitalize a string

select one of n strings

redefine control characters

set reference detection mode in comment statements
center text

-83 -

84 PDL/81 Format Designers Reference Guide

cfo copy final output

close close a file

cm define comment strings

cpf copy file until regular expression match
dc define comment characters

ddf set data item definition mode

defont remove font information from a string
del delete one or more functions

dfo divert final output

di open or close a diversion

drf set data item reference mode

ds define a string

dsc define data special characters

dt define a tag

dump output the encoded dictionary

dup duplicate a function

dx define keywords, secondary keywords, data items, and segments
ebox end drawing of a box

els set extra line spacing

enhance enhance a string using current keyword font
env push current environment and set a new one
envs set a new current environment

eq test two strings for equality

error issue a non-terminal error message

ev evaluate an expression

exit exit from PDL/81 with a status code

fft force footing trap

fht force heading trap

fm format some text

fmt set formatting mode

fmtrap set a format trap

fmtrestore restore state of formatter

fmtsave save state of formatter

foot define page footing trap

X find information on secondary dictionary entry

Appendix B: List of Primitives 85

head define page heading trap

hpos set a given horizontal position

hsp horizontal space

icap capitalize initial character of a string

if select one of two strings

ifdef test if a name is defined

in set indent

include input from named file

index initiate design index processing

isp set imbedded space treatment mode

just set line justification mode

kwcase set case for printing keywords

kwcheck check flow figure

kwfont set font in which to print keywords

kwlm establish keyword left margin warning position
kwv control flow figure enhancement

kwvc define flow figure enhancement character
kwx allow executable keywords

Ibl define the label character and label printing position
leader fill with leaders

length obtain the length of a string

lib input from a library file

lindex determine set membership

Im set left margin

In set location to print line numbers

loop loop over arguments

Ipn obtain Licensed Program Number of PDL/81
Isp set mode for treatment of leading spaces
mc define margin character and position
memuse obtain memory use information

name extract segment name from a string
nargs count arguments in a string

nf format a number

nr define a number register

open open a named output file

86 PDL/81 Format Designers Reference Guide

out output unprocessed text

passl perform “passl1” processing

pass2 perform “pass2” processing

pass3 perform “pass3” processing

ps print a string (on standard error)

psize set page size

quit issue a fatal error message

rcv receive contents of a file written with “send”
rdi receive a diversion

rep replicate a string

rf do reference processing on a string

rm set right margin

rtrap establish a reference trap

rxg obtain value of a regular expression group
rxs scan and match a regular expression

scall call a function for each source file

sdf set segment definition mode

send send text to an intermediate file

skip skip until regular expression match
sneak put arbitrary characters into a string

snr set location to print statement numbers
source obtain name of source file

sp perform vertical spacing

spcok inhibit or allow vertical spacing

sqz squeeze out blanks

srf set segment reference collection mode
strap set a source trap

stuff put text at given horizontal position on output line
substr obtain a substring of a string

SX set current segment for reference collection
systype obtain type of operating system

tabw set current tab width

tags initiate tag retrieval scan

tf turn on tracing mode

ti set temporary indent

Appendix B: List of Primitives 87

tn turn off tracing mode

trees initiate segment reference tree processing

ttl print a three-part title

tv obtain value of a tag

uf use a font for printing some text

ups convert blanks to unpaddable spaces

ver obtain primary version number of PDL/81 processor
ver2 obtain secondary version number of PDL/81 processor
width obtain width of a string

xswf turn off switches

Xswn turn on switches

XSWV get switch values

C. List of Number Registers

.boxfont
.cmdarg
.cmdcall
.cmderr
.cwidth
dline
.envnr
.hour
.ixemplx
.ixdcode
.ixdline
.ixdpage
.ixdval3
.ixdval4
.ixrline
.ixrpage
.mcfont
.mday
.min
.month
.ndefl
.ndict
.nfivb

font to print box drawing characters

switch to allow argument separators on command lines
switch to allow calls on command lines

switch to report undefined command names as errors
width of a character in output device basic units
number of lines in last closed diversion

current environment number

current hour of day (0 - 23)

complexity value for a keyword

code of an index entry

definition line of an index entry

definition page of an index entry

“val3” value for a dictionary entry

“val4” value for a dictionary entry

reference line for an index reference

reference page for an index reference

font to print marginal character

day of month (1 - 31)

current minute (0 - 59)

month (1 - 12)

number of lines in definition files

number of dictionary entries

number of allocated but now free string storage units (ivb’s)

-89 -

90 PDL/81 Format Designers Reference Guide

.nivb number of allocated string storage units (ivb’s)
.nobs switch to inhibit issuing of backspace characters
.noff switch to inhibit issuing of form feed characters
.notab switch to inhibit issuing of tab characters

.nsrcl number of lines in source files

.page current page number

.po page offset

.sec current second (0 - 59)

.stanr current segment statement number

.Stree switch to enable “short tree” format

.tagerr count of number of mismatched tags

trlevel level of current tree node

trinr line number of current tree node

.trpage page number for definition of current tree node
.trshort line number of previous display of current tree node
.wday day of week (1 - 7, Sunday = 1)

Xrsw switch to enable collection of reference information
.yday day of year (1 - 366)

.year year minus 1900

Index

as break character 6

$ddi escape function 44, 63
$depth primitive 28

$dev-xxx function 5, 63

$dseg escape function 45, 63
$end function 5, 63

$evOtxt escape function 47, 63
$file primitive 14

$foot primitive 28

$in primitive 31

$inderr escape function 42, 63
$kwerr function 41

$line primitive 30

$Im primitive 30

$NoDev string 5

$pp escape function 34, 63
$rm primitive 30

$start function 5, 63, 71
$tabw primitive 32

$width primitive 28

% as command character 6

*bol special string 66
*bu special string 65
*eol special string 65

*fn string 58

*goff special string 33, 65
*gon special string 33, 65

. as first character of a name 17
.boxfont number register 38, 69
.cmdarg number register 9, 67
.cmdcall number register 9, 67

.cmderr number register 9, 67, 79

.cwidth number register 33, 68
.dline number register 50

-91 -

.envnr number register 48, 69
.hour number register 68

.ixcmplx number register 39, 69
.ixdcode 69

.ixdcode number register 40, 42, 55
.ixdline number register 40, 47, 54,

69

.ixdpage number register 40, 47, 54
.ixdpage register 69

.ixdval3 number register 40, 69
.ixdval4 number register 40, 69
.ixrline number register 55, 69
.ixrpage number register 55, 69
.mcfont number register 46, 69
.mday number register 67

.min number register 68

.month number register 67

.ndefl number register 69

.ndict number register 69

.nfivb number register 69

.nivb number register 69

.nobs number register 68

.noff number register 68

.notab number register 68

.nsrcl number register 69

.page number register 44, 45, 68, 73
.po number register 68

.sec number register 68

.spcok primitive 73

.stanr number register 44, 45, 46, 68
.stree number register 53, 68
.tagerr number register 51, 69
.trlevel number register 53, 69
.trinr number register 53, 69
.trpage number register 69

.trshort number register 69

.wday number register 67

Xrsw number register 44, 45, 53, 68

92 PDL/81 Format Designers Reference Guide

.yday number register 67
.year number register 67

8-bit characters 19
6
? as argument count character 6
As escape character 6
« as bullet character 8
} as right bracket 6
N in expressions 10

Absolute expression 10

Access primitive 22

Alphabetic list of number registers
89

Alphabetic list of primitives 83

Alphabetic numbers 16

Alternate source files 20

Appending to a string 16

Argument count character 6, 23

Argument counting 37

Argument list looping 18

Argument separator character 6, 23

As primitive 16

ASCII control codes 7

Attributes of VMS files 20

Automatic paragraphs 34

Auxiliary files 20, 77

Backspace output generation 68
Backup primitive 22

Base primitive 22

Begin new page 29
Begin-font control string 59
Beginning a font 59
Beginning-of-line string 66
Blank lines 34

Blank squeezing 37

Blanks 34

BIl primitive 34

Bold face output 58

Box drawing 37

Box primitive 37

Bp primitive 29

Br primitive 33

Break character 6, 23
Breaks in lines 33

Built-in number registers 67
Bullet character 8, 65

Call primitive 18

Calling trees 52

Cap primitive 42

Capitalizing text 42

Case of keywords 42

Case primitive 18

Cc primitive 7, 23

Cdata primitive 44

Ce primitive 35

Centered output 35

Cfo primitive 51, 75, 79, 80

Character constant 10

Character, comment 31

Character, data 31

Characters, special 6

Close primitive 21

Cm primitive 32

Code segment control primitives 62

Command character 6, 9, 23

Command control number registers
67

Command line 6, 9, 14

Comment character 31

Comment line 9

Comparison of strings 17

Composition of data items 31

Conditional selection 17

Constant 10

Continuation of input lines 8

Continue character 7, 8, 23

Control character constant 10

Control codes, ASCII 7

Control of execution 17

Control primitives 13

Control string, font 58

Controlling design attributes 43

Counting arguments 37

Cpf primitive 62

Cross reference control 68

Cross-reference collection 39

Current flow segment 39

Data character 31

Data item 31

Data item composition 31
Data item definition 14, 43
Data item index 54

Data item names 39

Data item references 14, 44
Date 67, 72

Dc primitive 31

Ddf primitive 14, 31, 43
Debugging primitives 24
Decimal constant 10
Default page depth 27

Default page width 27

Definition file 5

Definition of data items 14, 39, 43

Definition of flow segments 39

Definition of segments 14, 45

Definition of strings 15

Definition phase 5,9

Definition primitives 13

Defont primitive 60

Del primitive 17, 79

Deletion of strings, primitives, and
number registers 17

Depth of page 27

Design attributes 43

Design control primitives 27

Design labels 45

Design oriented special characters
31

Design trees 52

Device control codes 19, 22

Device initialization sequences 22

Dfo primitive 51, 75

Di primitive 50

Diablo 1620 65

Dictionary 15, 38

Dictionary saving 25

Dictionary, primary 15

Dictionary, secondary 38

Dimensions of page 27

Distributed document styles 2

Diversion of final output 50

Diversion of text 50

Diversions 50

Document styles 2

Document styles, distributed 2

Drawing boxes 37

Drf primitive 14, 31, 44

Ds primitive 15, 79

Dsc primitive 31

Dt primitive 51

Dump primitive 25

Dup primitive 17,79

Duplication of strings, primitives,
and number registers 17

Dx primitive 38, 40, 43, 44

Dynamic memory use 25

Ebox primitive 38

Eject page 29

Els primitive 36

Empty lines 34

End-font control string 59
End-of-line string 65
Ending a font 59
Enhancement, keyword 60

Index 93

Entering a font 59

Env primitive 47, 81
Environment, obtaining current 48
Environments 47

Envs primitive 47

Eq primitive 17

Error messages 79

Error messages, fatal 80

Error messages, non-terminal 79
Error messages, terminal 80
Error primitive 23,79

Error reporting 23

Escape character 6, 8, 9, 23
Escape functions 63

Ev primitive 16

Evaluation primitives 16
Examples 71

Executable keywords 41
Execution control 17

Execution structure primitives 13
Exit primitive 18

Exiting from PDL/81 18
Expansion of number registers 8
Expansion of primitives 7
Expansion of strings 7

Explicit reference processing 46
Expression evaluation 16
Expression operators 11
Expressions 10

Extensions 22

Extra line spacing 36

Extracting matched substrings 62

Fatal error messages 80

FDL 1,71

Fft primitive 29

Fht primitive 29

File attributes 20

File extensions 22, 77

File number 20

Filled formatting mode 32

Final output diversion 50

Final output file 50

Finding a member of a set 18

Finding secondary dictionary entries
40

Flow figure checking 40

Flow figure enhancement 43

Flow segment index 54

Flow segment names 39

Fm primitive 6, 14, 35, 36

Fmt primitive 32

Fmtrap primitive 36

Fmtrestore primitive 50

Fmtsave primitive 49

94 PDL/81 Format Designers Reference Guide

Font control primitives, miscella-
neous 60

Font control registers 69

Font control string 58

Font control string, null 60

Font definition and use 57

Font definitions, initial 60

Font, beginning 59

Font, ending 59

Font, undefined 60

Fonts, defining 58

Fonts, keyword 39

Fonts, using 57

Foot primitive 28

Footing traps 28

Forcing traps 29

Form feed generation 68

Format definition file 5

Format definition language 1

Format trap 36

Formatter state, saving and restoring
49

Formatting modes 32

Formatting numbers 16

Formatting primitives 27, 34

Functions 8

Fx primitive 40

General information 5

Head primitive 28
Heading traps 28
Hexadecimal constant 10
Horizontal margins 30

Icap primitive 43

If primitive 17

Ifdef primitive 17, 18
Illegal characters 79
Imbedded spaces 34, 36

In primitive 31

In-line table of contents 75
Include files 20

Include primitive 20
Indenting 30, 31

Index handling 76

Index primitive 54, 76
Indexes 54

Indexing number registers 69
Information primitives 24
Informational registers 69
Inhibiting of spacing 29
Initial font definitions 60
Input primitives 19

Input scanning 7

Inserting control codes 19
Introduction 1

Invalid characters 79

Isp primitive 34, 36

Just primitive 33
Justification 33

Keyword 39

Keyword alignment 42
Keyword case 42
Keyword enhancement, explicit 60
Keyword fonts 39, 60
Keyword left margin 42
Keyword, executable 41
Kwcase primitive 42
Kwecheck primitive 41
Kwfont primitive 60
Kwlm primitive 42
Kwusrc primitive 60
Kwv primitive 43

Kwvc primitive 43
Kwx primitive 49

Labels 45

Lbl primitive 45

Leader primitive 35
Leaders 35

Leading spaces 34

Leaving a font 59

Left bracket 6, 23

Left margin 30

Left margin of keywords 42
Length of a string 19
Length primitive 19

Lib primitive 20

Libraries 20

Library, style 2

Lindex primitive 18

Line breaks 33

Line centering 35

Line number 30

Line processing 6

Line spacing, extra 36

Lm primitive 30

Lnr primitive 46

Locating a member of a set 18
Loop primitive 18

Looping over an argument list 18
Lpn primitive 24

Lsp primitive 34

Margin, left 30
Margin, right 30
Marginal information 46

Margins, horizontal 30

Maximum page depth 27

Maximum page width 27

Mc primitive 46

Measurement of vertical extent 50

Membership in set 18

Memory use 25

Memuse primitive 25

Meta codes 7, 21

Miscellaneous font control Primitives
60

Modes of formatting 32

Name primitive 32, 36

Name space 8

Names of segments 36

Nargs primitive 37

Nf primitive 16

Nofilled formatting mode 32

Non-terminal error messages 79

Nr primitive 10, 16, 79

Null font control string 60

Number formatting 16

Number register primitives 16

Number register, expansion of 8

Number registers 10, 16, 67

Number registers as expression
operands 10

Number registers, alphabetic list of:
89

Number registers, command control
67

Number registers, cross reference
control 68

Number registers, date and time 67

Number registers, font control 69

Number registers, indexing 69

Number registers, informational 69

Number registers, output control 68

Number registers, tag related 69

Number registers, tree 68

Numeric constant 10

Octal constant 10

Offset, page 68

Open primitive 20, 80, 81
Operation summary 5
Operators 11

Other publications 2

Out primitive 22

Output diversion 50
Output formatting primitives 34
Output primitives 19
Overall operation 5

Index 95

Page depth 27

Page dimensions 27

Page footers 28, 72

Page headers 28, 72

Page offset 68

Page size 27

Page width 27

Paragraphs 34

Passl primitive 5, 6, 9,

Pass2 primitive 5, 6, 9,

Pass3 primitive 5, 9, 13

Pausing while tracing 24

Permanent items 17

Pns primitive 24

Position, vertical 30

Primary dictionary 15

Primitives 13, 27

Primitives to control execution struc-
ture 13

Primitives, alphabetic list of 83

Primitives, expansion of 7

Process phase 5, 13

Processing cycle 6

Processor information 24

Ps primitive 22

Psize primitive 27

Publications, related 2

13
13, 32

Quit primitive 23,79

Rcv primitive 20, 21, 76, 81

Rdi primitive 50

Receive primitive 74

Redefining a string 16
Redefining special characters 23
Reference collection 39
Reference processing, explicit 46
Reference trap 46

References to data items 14, 44, 46
References to segments 14, 45, 46
Regular expression processing 61
Regular expression scanning 61
Related publications 2

Relative expression 10

Rep primitive 19

Replacing a string 16

Replicating strings 19

Reporting errors 23

Restoring the formatter state 49
Rf primitive 46, 47

Right bracket 6, 23

Right margin 30

Rm primitive 30

Roman numerals 16

Rtrap primitive 46

96 PDL/81 Format Designers Reference Guide

Rxs primitive 61 String length 19
String processing primitives 19, 36

Saving the dictionary 25 String replication 19
Saving the formatter state 49 String, comment 31
Scall primitive 15 Strings, expansion of 7
Scanning of input 7 Structured formatting mode 32
Scratch files 20 Stuff primitive 35
Sdf primitive 14, 32, 45 Style library 2
Searching for secondary dictionary Style of design 2

entries 40 Substr primitive 19
Secondary dictionary 38 Substrings 19
Secondary keyword 39 Summary of operation 5
Segment definition 14, 45 Switch manipulation primitives 49
Segment index 54 Sx primitive 39
Segment labels 45 System type 25
Segment names 36 Systype primitive 25
Segment reference trees 52
Segment references 14, 45 Tab expansion on input 7
Send primitive 20, 74, 76, 78, 80 Tab generation 68
Set membership, finding 18 Tab width 32
Setting as an argument type 27 Table of contents handling 74
Size of a page 27 Table of contents, in-line 75
Skip primitive 62 Tabw primitive 32
Sneak primitive 19 Tag handling 76
Sneaking characters into strings 19 Tag related registers 69
Snr primitive 46 Tags 51, 69
Sorted files 20 Tags primitive 52
Source file 13 Temporary files 20
Source files, alternate 20 Temporary indentation 31
Source line trap 15 Terminal error messages 80
Source primitive 13 Terminating PDL/81 processing 23
Sp primitive 29 Text diversions 50
Spaces 34 Tf primitive 24
Spacing inhibiting 29 Three-part title 35
Spacing, vertical 29 Ti primitive 31
Spcok primitive 29 Time of day 67
Special characters 6 Title lines 35
Special characters, design oriented Tn primitive 24

31 Trace mode 24
Special characters, redefining 23 Trap forcing 29
Special strings 65 Trap, format 36
Squeezing out blanks 37 Trap, reference 46
Sqz primitive 37 Trap, source line 15
Srf primitive 14, 32,45 Traps for heading and footing 28
Srf processing mode 47 Trees 52, 68
Standard error file 22, 79 Trees primitive 52
Standard input file 13 Ttl primitive 35
Standard output file 22, 50 Tv primitive 52
State of formatter, saving and restor- Type of system 25

ing 49
Statement number 68 Uf primitive 57
Statement numbers 46 Undefined command name 9
Strap primitive 15 Undefined font 60
String comparison 17 Unix 22,81

String definition 15 Unpaddable space 8

Upper-case promotion of text 42
Ups primitive 60

Variables 10

Ver primitive 24

Ver2 primitive 25

Vertical extent measurement 50
Vertical position 30

Vertical spacing 29

VMS file attributes 20

Width of page 27

Width primitive 36

Writing to standard error 22
Writing to standard output 22

X switch 49

Xsw environment entry 41, 49
Xswf primitive 49

Xswn primitive 49

Xswv primitive 49

Index 97

	Introduction
	General Information
	Definition and Control Primitives
	Formatting and Design Primitives
	Font Definition and Use
	Regular Expression Processing
	Escape Functions
	Special Strings
	Built-In Number Registers
	Examples of Use
	Appendices
	Error Messages
	List of Primitives
	List of Number Registers

	Index

