
D
R

A
FT

the tool for software designers

PDL/81

Design Language

Reference Guide

(Version 2.0)

Caine, Farber & Gordon, Inc. Warren Point International Ltd.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the software described herein is governed by
the terms of a license agreement or, in the absence of an agreement, is subject to
restrictions stated in subparagraph (c)(1) of the Commercial Computer Software
– Restricted Rights clause at FAR 52.227-19 or subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013,
as applicable. [Caine, Farber & Gordon, Inc.; 1010 East Union St.; Pasadena, CA
91106]

Comments or questions relating to this manual or to the subject software are welcomed
and should be addressed to:

In North America: In the Rest of the World:
Caine, Farber & Gordon, Inc. Warren Point International Ltd.
1010 East Union Street Babbage Road
Pasadena, CA 91106 Stevenage, Herts SG1 2EQ
USA England

Tel: (800) 424-3070 or Tel: 0438 316311
(818) 449-3070

Fax: (818) 440-1742 Fax: 0227 86521

Form Number: 9102-2

1 August 1988
20 February 1989
1 December 1991

Copyright 1981, 1985, 1988, 1991 by Caine, Farber & Gordon, Inc. All Rights Reserved.

PDL/74, PDL/81, PDL/91, and the PDL prefix are trademarks of Caine, Farber & Gordon,
Inc. UNIX is a registered trademark of UNIX System Laboratories. PostScript is a regis-
tered trademark of Adobe Systems Incorporated. Ada is a registered trademark of the U.
S. Governmenment (Ada Joint Program Office). VAX, VMS, and ULTRIX are trademarks
of Digital Equipmeent Corporation. MS and XENIX are trademarks of Microsoft Corpora-
tion.

Contents

Chapter 1. Introduction . 1
1.1 Features and Capabilities of PDL/81 . 1
1.2 Document Styles and the PDL/81 Style Library . 2
1.3 Related Publications . 2
1.4 A Note to the Reader . 3

Chapter 2. General Information . 5
2.1 Format of a Design . 5

2.1.1 Front Matter . 5
2.1.2 Design Body . 6
2.1.3 Reports . 6
2.1.4 Final Page . 6

2.2 Invocation of PDL/81 . 7
2.3 Overall Operation . 7
2.4 Input Format . 7

2.4.1 Tab Expansion on Input . 7
2.4.2 Continuation of Input Lines . 7
2.4.3 Special Characters . 7

2.5 Command Lines . 8
2.6 Including Alternate Source Files . 8
2.7 Design Body Conventions . 9

2.7.1 Segment Delimiting . 9
2.7.2 Display of Segments . 9
2.7.3 Comment Strings . 9

Chapter 3. Groups . 11

Chapter 4. Text Segments . 13
4.1 Unformatted Text Segments . 13
4.2 Formatted Text Segments . 14

4.2.1 Lists . 14
4.2.1.1 Bullet Lists . 15

- i -

ii PDL/81 Design Language Reference Guide

4.2.1.2 Numbered Lists . 15
4.2.1.3 Verb Lists . 15

4.3 Switching Between Formatted and Unformatted Modes 16

Chapter 5. General Formatting Commands . 17
5.1 Vertical Spacing Commands . 17
5.2 Heading Commands . 18

Chapter 6. Data Item Declaration . 19
6.1 Data Items . 19
6.2 Implicit Data Item Declaration . 20
6.3 Explicit Data Item Declaration (Data Segments) . 21

6.3.1 Normal Declaration Mode . 21
6.3.2 Special Declaration Mode . 21

Chapter 7. Flow Segments . 23
7.1 Flow Segment Body . 23
7.2 Reference Recognition . 24
7.3 Labels . 24
7.4 Special Statements . 25

7.4.1 Keywords and Secondary Keywords . 25
7.4.1.1 Keyword Enhancement . 26

7.4.2 The IF Construct . 27
7.4.3 The DO Construct . 28

7.4.3.1 The DO WHILE Construct . 28
7.4.3.2 The DO UNTIL Construct . 29
7.4.3.3 The UNDO Statement . 29
7.4.3.4 The CYCLE Statement . 30
7.4.3.5 The DO FOREVER Construct . 30
7.4.3.6 The DO FOR Construct . 30
7.4.3.7 The DO CASE Construct . 30
7.4.3.8 Other Possible DO Constructs . 31

7.4.4 The RETURN Statement . 31

Chapter 8. External Segments . 33

Chapter 9. Text Functions . 35
9.1 The DATE Text Function . 35
9.2 Underscoring of Text . 36
9.3 Tags and References . 36

Chapter 10. Listing Control Commands . 39
10.1 Specifying Design Titles . 39

10.1.1 Defining a Page Head . 39
10.2 Specifying the Listing Date . 40
10.3 Specifying Security Banners . 40

10.3.1 Security Banner Style . 41
10.4 Specifying “Special” Boxes . 41

Contents iii

10.5 Specifying Line Number Printing . 42
10.6 Specifying Change Bars . 42

Chapter 11. Advanced Features . 43
11.1 Complexity Analysis . 43

11.1.1 Complexity Measurement Commands . 43
11.2 Automatic Requirements Tracking . 44

11.2.1 Requirements Index . 44
11.3 Consistency Checking . 45
11.4 Flow Figure Enhancement . 45
11.5 Design and Code in the Same File . 46

Chapter 12. Processor Reports . 47
12.1 Segment Reference Trees . 47
12.2 Data Item Index . 48
12.3 Flow Segment Index . 48
12.4 Index of Overly Complex Segments . 48
12.5 Index to Requirements . 49
12.6 Calls-in-Context List . 49

Appendices

Appendix A. Error Messages . 51
A.1 Non-Terminal Error Messages . 51
A.2 Terminal Error Messages . 52
A.3 Other Error Messages . 53

Appendix B. List of Commands . 55

Appendix C. Adding New Keywords . 59
C.1 Defining Primary Keywords . 59
C.2 Defining Secondary Keywords . 60
C.3 Keyword Classes and Codes . 60
C.4 Placement of Keyword Definitions . 62

Appendix D. Sample PDL/81 Design . 63
D.1 Design of an Automobile Cruise Control System . 63

D.1.1 Output of PDL/81 Processor . 63
D.2 Source Listing . 104

Index . 109

1. Introduction

PDL/81 is a software tool intended as an aid to designing and documenting a pro-
gram or system of programs. The tool consists of a processor and a style library
which is used to tailor the processor to the particular requirements of the docu-
ment being produced. As distributed, the style library includes definitions for
such document styles as:

• program designs;

• manuals and reports;

• memoranda; and

• business letters.

This manual describes the particular data base components which relate to for-
matting program designs. Other manuals (see Section 1.3) describe the other data
base components and the methods for modifying the data base.

The original version of PDL, known as PDL/74, was first developed in 1973. It
was intended exclusively for processing program design documents and displaying
these documents in a predetermined style. Over the years since the first release,
the large PDL user community has provided numerous suggestions for changes
and improvements. Most of these suggestions came from the desire to improve the
text handling capabilities of PDL/74 and the desire to have significantly more con-
trol over the detailed format of the resulting document. PDL/81 addresses these
desires directly while still presenting an interface to the designer which is easy to
use.

1.1 Features and Capabilities of PDL/81

PDL/81 is a tool which integrates the capabilities commonly associated with a pro-
gram design language processor and those of a text processing system.

This integration is accomplished by providing an extensive set of primitive for-
matting operations and a definitional language which allows a format designer to
compose abstract constructs from these primitive operations. As an example, a
document style for program designs might contain such concepts as “data
segment” and “flow segment” while a style for manuals might contain such con-
cepts as “chapter”, “enumerated list”, and “paragraph”.

- 1 -

2 PDL/81 Design Language Reference Guide

The end user of PDL/81 uses these abstract concepts without any need to un-
derstand the underlying implementation or format design methods. Thus, writing
and processing program designs is as simple with PDL/81 as with PDL/74, but the
local project manager has significantly more control over the layout and appear-
ance of the resulting design document.

The primitive operations of the Format Design Language allow the format de-
signer a very high degree of flexibility in creating document styles. Among the
available capabilities are:

• Complete control over page layout including sheet dimensions and top, bot-
tom, left, and right margins;

• Simple measurements of the cyclomatic complexity of a design;

• Tracking of requirements sections throughout a design;

• Checking that procedure definitions and invocations are consistent;

• Arbitrary running text at top and bottom of each page including security
banners with document classification and sheet count;

• Definition of primary and secondary keywords for use in program designs;

• Definition of layout and characteristics of all program design segment types
and the ability to create new types of segments;

• Ability to include input from alternate files;

• Automatic generation of table of contents and other such tables (e.g., table of
figures, table of tables);

• Automatic generation of document indexes in various forms.

1.2 Document Styles and the PDL/81 Style Library

The document styles which are available at an installation reside in the PDL/81
‘style library. The form of the library depends on the particular host operating sys-
tem. The particular style to be used in a PDL/81 run is specified as an option
when PDL/81 is invoked.

1.3 Related Publications

Other publications relating to the use of PDL/81 are:

• PDL/81 Introduction and Invocation Guide – a guide to invoking PDL/81
under various operating environments

• PDL/81 Ada Design Language Reference Guide – a guide to using PDL/81
for Ada program design

• PDL/81 Document Language Reference Guide – a guide to using PDL/81 for
producing various documents such as manuals and reports

• PDL/81 Format Designers Guide – A guide to developing new types of
PDL/81 design and document styles

• PDL/81 Installation Guide – a guide to installing PDL/81 under the various
supported operating systems.

Chapter 1: Introduction 3

1.4 A Note to the Reader

This manual describes the distributed document style “design” which is intended
to be the standard style for formatting program designs. A sample program design
is presented in Section D.1.

If you don’t like the results of this style, you may desire to modify the data
base. Simple modifications can generally be accomplished after an examination of
various data base entries. Extensive modifications, and the development of en-
tirely new design styles, will require reference to the PDL/81 Format Designers
Guide.

The “design” style should be considered as an example of the kind of design
tool which may be defined with PDL/81. For any particular project, it may be de-
sirable to tailor a specific definitions file by removing many of the options which
are described here.

2. General Information

This chapter discusses various aspects of the PDL/81 design style which are of
general interest. It includes information on the form of a design, overall operation
of the processor, and the syntax of PDL/81 commands.

This chapter does not discuss how to invoke the PDL/81 processor under the
various supported operating systems. Invocation is discussed in the PDL/81 In-
troduction and Invocation Guide.

2.1 Format of a Design

The PDL/81 design style accepts as input a series of source lines and produces a
design document. The document can be formatted for printing on different types
of output devices and different paper sizes.

A sample design is showen in Section D.1. The design document is composed
of several major sections:

1. Front matter

2. Design body

3. Reports

4. Final page

which are now briefly described.

2.1.1 Front Matter

This is the first part of the design document. It begins with a title page which
identifies the particular design. Primary information for this page comes from the
title command (see Section 10.1) and the date command (see Section 10.2).

The title page is followed by the table of contents for the design. The table of
contents lists all of the sections and subsections which make up the design along
with their corresponding page numbers.

- 5 -

6 PDL/81 Design Language Reference Guide

2.1.2 Design Body

The design body presents the actual data definitions, procedure definitions, and
textual information of the design. This section is composed of various kinds of seg-
ments which may be structured into groups (see Chapter 3). The segment types
are:

• Text Segments: which represent arbitrary commentary (see Chapter 4).

• Data Segments: which allow explicit definition of data items (see Section
6.3).

• Flow Segments: which represent the procedural flow of the design (see Chap-
ter 7).

• External Segments: which allow declaration of procedures which are as-
sumed to be defined somewhere outside of this design document (see Chap-
ter 8).

2.1.3 Reports

The processor can be instructed to produce several reports (see Chapter 12) which
provide information about the content and internal structure of the design. These
reports are particularly useful in understanding a design. The possible reports
are:

• Reference Trees: which shows all of the flow segments arranged in the form
of a calling tree. There will be several trees if there are several flow roots in
the design. Recursive use of flow segments will be indicated. Reference trees
are further described in Section 12.1.

• Data Index: which lists each data item in alphabetic order and shows the
points in the design where each is referenced. The data index is further de-
scribed in Section 12.2.

• Flow Segment Index: which lists each flow segment in alphabetic order and
shows the points in the design where each is referenced. The flow segment
index is further described in Section 12.3.

• Overly Complex Segment Index: which lists each segment which has a cyclo-
matic complexity value greater than the selected maximum (see Section 11.1
for a discussion of complexity measurement and Section 12.4 for a discussion
of the report).

• Requirements Index: which lists each declared requirement number and the
segments that address that requirement (see Section 11.2 for a discussion of
requirements tracking and Section 12.5 for a discussion of the report).

• Calls-in-Context Index: which shows each procedure, function, or entry pint
definition along with each line that calls it (see Section 11.3 for a discussion
of calls-in-context and Section 12.6 for a discussion of the report).

2.1.4 Final Page

This is the last page of the design document. Besides confirming that the design
was completely processed, this page displays a number of statistics about the pro-
cessing.

Chapter 2: General Information 7

2.2 Invocation of PDL/81

The manner of invoking PDL/81 depends on the particular operating system being
used. Refer to the PDL/81 Introduction and Invocation Guide for specific informa-
tion.

2.3 Overall Operation

PDL/81 processes a design in two passes. During the first pass, the source is read,
page breaks are determined, and a dictionary of data item and segment names is
constructed. During the second pass, the source is reread, references to data items
and segments are detected, and the design document is formatted. During both
passes, progress is noted by displaying the current page number and processing
phase on a file (which will usually be the controlling terminal).

2.4 Input Format

Input to PDL/81 consists of a sequence of source lines. Each line is terminated by
a newline character. This section describes the interpretation of various special
characters and character sequences within source lines. The only ASCII control
codes allowed on an input line are “tab” and “newline”.

2.4.1 Tab Expansion on Input

ASCII tab characters are allowed on input lines. Each tab will be replaced by
enough blanks to position the immediately following character to the next input
tab stop. Input tab stops are set at columns 1, 9, 17,

2.4.2 Continuation of Input Lines

Any input line may be continued in one of two ways:

• The sequence “\<newline>” results in deletion of both characters, thus caus-
ing the following line to be considered part of the current line. The character
“\” is known as the escape character and has additional uses as described in
Section 2.4.3.

• The sequence “/<newline>” will be replaced by a single blank, thus causing
the current and following lines to be treated as a single line with their con-
tents separated by a blank. The character “/” is known as the continue char-
acter. It has special significance only when it immediately precedes a new-
line character – in any other context, it is just another character.

2.4.3 Special Characters

The character sequence “#{” is used to introduce a text function as described in
Chapter 9. The sequence should not appear in any other context, as the results
will be unexpected. If it is necessary to use the sequence for some other purpose,
the “#” should be protected by an escape character as in “\#{”.

The special sequence “*” will be replaced by the so-called bullet character
(bullet) in the printed output. The form of this special character depends greatly
on the output device being used.

8 PDL/81 Design Language Reference Guide

The escape character followed by a space is known as the unpaddable space. It
will be replaced by a single space in the printed output, but will not be considered
to mark a word break during processing.

2.5 Command Lines

If the first character of a line is a “%”, the line is known as a command line. Com-
mand lines contain commands which direct various types of processing or provide
various information to PDL/81.

When a command line is encountered, white space (blanks and tabs) following
the “%” is skipped. If a newline is encountered, the command line is ignored. If an
asterisk (“*”) is encountered, the line is considered to be a comment command, the
rest of the line is skipped, and the whole line is ignored.

If anything else is encountered, it is assumed to start a command name which
extends to the first blank, tab, or newline. After skipping any white space, the re-
mainder, if any, of the line is considered to be the command argument. Thus, for
example.

%Title This is a Sample

is a command line with a command name of “Title” and a command argument of
“This is a Sample”.

Commands may have multiple arguments which are separated from each
other by semicolons (“;”). Thus, the general form of a command line is

%name [argument[;argument]...]

where the brackets indicate optional material.

The case (upper, lower, mixed) of a command name is immaterial. Thus, for
example, “Title”, “TITLE”, “title”, or even “tiTlE” all represent the same command
name.

2.6 Including Alternate Source Files

At any point in the design source, input may be switched to another source file by
the command

%Include file

where file is the name of the file to be included. Files included with an %Include
command may contain %Include commands.

Chapter 2: General Information 9

2.7 Design Body Conventions

As outlined in Section 2.1.2, the design body is composed of a number of segments.
There are no restrictions on the ordering of segments. The only restriction on the
number of segments is that imposed by the amount of memory available to
PDL/81 while processing a design.

2.7.1 Segment Delimiting

A segment is introduced by one of the segment commands described elsewhere in
this manual. These commands are:

%Text or %T start a text segment (Chapter 4)

%TextF or %TF start a formatted text segment (Chapter 4)

%Data or %D start a data segment (Section 6.3)

%Segment or %S start a flow segment (Chapter 7)

%External or %E start an external segment (Chapter 8)

A segment is terminated by the next occurrence of a segment command, a %Group
command (see Chapter 3), or the end of the design source.

2.7.2 Display of Segments

Each segment can occupy one or more pages. However, experience has shown that
designs are generally much more readable and understandable if each segment is
limited to a single page.

Each segment will be enclosed in a box composed of characters specific to the
type of segment. The various characters are:

text segment

D data segment

* flow segment

X external segment

If the body of a segment is empty, the box will contain a generated notice that the
segment was intentionally left blank.

2.7.3 Comment Strings

The description of data segments (Section 6.3) and of flow segments (Chapter 7)
will refer to syntactic constructs known as comment strings which are used as de-
limiters in certain contexts (e.g., to separate a procedure name from its
“arguments”).

Initially, there are two comment strings defined – the dot (“.”) and the left
parenthesis (“(”). Replacement or additional comment strings may be defined by
the command

%CString [string]

10 PDL/81 Design Language Reference Guide

where string is one or two non-blank printing characters other than letters or dig-
its. No two comment strings may begin with the same first character. If string is
absent, all comment strings will be deleted.

For example, to add the Ada comment convention of “--” to the list of com-
ment strings, the command

%CString --

may be used. The sequence of commands

%Cstring
%CString (
%CString --

will establish just the left parenthesis and the Ada comment convention as the
only comment strings.

3. Groups

A design may be broken into various sections by use of commands of the form

%Group text

or

%G text

where text is any sequence of characters to be used as the title for the group. In
the design document, each group will be prefaced with a page containing the title
of the group centered and boxed. The title will also appear as a subtitle on each
design page within the group and will be placed in the table of contents for the de-
sign.

Examples of group declarations are

%Group Pass One Processing
%G Input Editing Phase

A group is terminated by the next “Group” or “G” command or by the end of the
design.

- 11 -

4. Text Segments

Text segments are used to place blocks of commentary into a design. They are fre-
quently used to supply such material as introductory information, table layouts,
and record layouts. There are two types of text segments – unformatted and for-
matted. Only commands specific to text segments are described in this chapter.
See Chapter 5 and Chapter 9 for a discussion of other functions and commands
which are useful in text segments.

4.1 Unformatted Text Segments

An unformatted text segment is introduced by the command

%Text text

or

%T text

where text is any sequence of characters to be used as the title of the segment.
The title will be displayed at the top of the segment page and will be entered in
the table of contents.

The lines comprising the body of an unformatted text segment are simply in-
put and printed as is. No automatic formatting will be performed except that lines
which are too long to fit into the segment box will be split at word boundaries and
printed on two or more lines. White space on input lines is kept and blank input
lines will result in blank output lines.

Examples of commands to introduce an unformatted text segment are:

%Text Introduction to Position Monitoring Module
%T Other Documents Relating to this Subsystem

- 13 -

14 PDL/81 Design Language Reference Guide

4.2 Formatted Text Segments

A formatted text segment is introduced by the command

%TextF text

or

%TF text

where text is any sequence of characters to be used as the title of the segment.
The title will be displayed at the top of the segment page and will be entered into
the table of contents.

The lines which comprise the segment are considered to be running text.
Words are collected, regardless of the input line boundaries, and are put into the
output line until a word does not fit. The output line is then printed and a new
output line is started. This action is known as “breaking” the line. A break is
forced by a blank input line and by the commands described in Section 4.2.1 and
Chapter 5. White space on input lines is kept and blank input lines result in
blank output lines.

Examples of commands introducing formatted text segments are:

%TextF Standards Used in this Design
%TF Outline of Link-Level Protocols

4.2.1 Lists

Within formatted text segments, three types of lists may be automatically format-
ted:

bullet each list entry is prefixed by the bullet (bullet) character.

numbered each list entry is prefixed by an automatically generated number.

verb each list entry is prefixed by an arbitrary word or phrase. (This list is
an example of a verb list.)

The same general structure is used for generating each kind of list. This
structure, presented in the form of a numbered list, is:

1. a list start command specifying the type of the list

2. one or more list entries

3. a %LE (list end) command to mark the end of the list

Lists may be nested.

Each list will be automatically preceded and followed by a blank line.

Chapter 4: Text Segments 15

4.2.1.1 Bullet Lists

A bullet list is introduced by the command

%BL

The text for the list entries should follow, separated from each other by a single
blank line. The list is closed by the command

%LE

which should not be preceded by a blank line.

4.2.1.2 Numbered Lists

A numbered list is introduced by the command

%NL

The text for the list entries should follow, separated from each other by a single
blank line. The list is closed by the command

%LE

which should not be preceded by a blank line.

4.2.1.3 Verb Lists

A verb list is introduced by the command

%VL [indent]

where indent is a decimal integer which specifies the number of characters to in-
dent the text of the list items. In the absence of indent, a value of 16 will be used.

Each item in a verb list is introduced by the command

%Verb text

where text is the word or phrase to be displayed at the left margin. The text of the
list entry follows on succeeding lines.

16 PDL/81 Design Language Reference Guide

The last entry in a verb list should be followed by the command

%LE

to close the list.

4.3 Switching Between Formatted and Unformatted Modes

The initial formatting mode (formatted or unformatted) for a text segment is de-
termined by the command which introduces that text segment. Within a text seg-
ment, either formatting mode may be established at any point by the commands

%Fill

which establishes formatted mode and

%NoFill

which establishes unformatted mode.

5. General Formatting Commands

This chapter describes commands which relate to the general control of formatting
within a segment. These commands are most often used in text segments (see
Chapter 4) but may be used in any kind of segment.

5.1 Vertical Spacing Commands

Blank lines may be inserted into a segment by the command

%Space number

where number is a decimal integer giving the number of blank lines to insert. If
the given number of blank lines exceeds the number of available lines remaining
on the page, a new page is started instead. For example,

%Space 3

would cause three blank lines to be inserted or would cause a page eject if there
were not at least three lines remaining on the page.

The command

%Need number

where number is a decimal integer, will cause a page eject if at least number lines
do not remain on the current page. If at least that many lines remain, the com-
mand has no effect. Thus,

%Need 5

will cause a new page to be started if fewer than five lines remain on the current
page.

- 17 -

18 PDL/81 Design Language Reference Guide

The command

%Eject

will cause a new page to be started.

5.2 Heading Commands

The heading commands allow descriptive headings to be placed within a segment.
When mentioned below, the terms “centered” and “flush left” are to be taken as
being relative to the textual display area within the segment box.

The command

%MajorHeading text

will skip two lines; print text centered, underscored, and capitalized; and skip two
lines.

The command

%Heading text

will skip two lines; print text flush left, underscored, and capitalized; and skip one
line.

The command

%SubHeading text

will skip one line; print text flush left and underscored; and skip one line.

6. Data Item Declaration

PDL/81 allows the designer to declare certain items known as data items. Refer-
ences to these items within flow segments will be collected and may be displayed
in the data item index (see Section 12.2).

6.1 Data Items

Within data segments (see Section 6.3) and flow segments (see Chapter 7), tokens
consisting of letters, digits, and certain special characters are considered to be po-
tential data items. A potential data item will be considered to be an actual data
item if it is defined as such in an implicit (see Section 6.2) or explicit (see Section
6.3) data declaration.

Lines which begin (possibly after some leading white space) with a comment
string (see Section 2.7.3) will not be examined for potential data items.

The special characters which may be part of a potential data item are initially
“$”, “#”, “@”, and “_”. Thus, in the line

x = a$1+bb*cc

the potential data items are

x a$1 bb cc

The case (upper, lower, mixed) of letters in names of potential data items is imma-
terial. Thus, for example, “test”, “Test”, “TEST”, and even “tEst” all represent the
same item.

The set of these special characters may be modified by the command

%DSChar char

where char is a non-blank, non-alphanumeric character to be added to the set of
data item special characters. If char is absent, the set is made empty. All uses of
the “DSChar” command should precede the first segment.

- 19 -

20 PDL/81 Design Language Reference Guide

As an example, the special characters “%” and “!” can be added to the set by
the commands

%DSChar %
%DSChar !

and the set can be defined to contain only the character “$” by

%DSChar
%DSChar $

6.2 Implicit Data Item Declaration

When a potential data item is encountered in a flow segment, it will be declared as
an implicit data item if

1. it contains a data character;

2. it is longer than one character; and

3. it is not declared elsewhere in the design as an explicit data item.

Initially, the underscore (“_”) is the only data character. New data characters may
be added to the set of data characters by the command

%DChar char

where char is a non-blank, non-alphanumeric character to be added. If char is ab-
sent, the set is made empty. All uses of the “DChar” command should precede the
first segment.

For example, the characters “-” and “$” can be added to the set of data charac-
ters by the commands

%DChar -
%DChar $

and the character “!” can be defined as the only data character by

%DChar
%DChar !

For compatibility with older versions, the command

%DataChar char

establishes the single character char as the only data character. The preferred
method of changing data characters is to use the “DChar” described above.

Chapter 6: Data Item Declaration 21

6.3 Explicit Data Item Declaration (Data Segments)

Data items are explicitly defined in data segments. A data segment is introduced
by the command

%Data text

or

%D text

where text is a sequence of characters to be used as the title of the data segment.
The title will be displayed at the top of the segment page and will be entered in
the table of contents. Note that the “Data” or “D” commands do not, themselves,
declare data items – they introduce segments in which data items are declared.
Examples of these commands are:

%Data Formats for Master File Records
%D Miscellaneous Data Definitions

The actual data definitions occur in the body of a data segment. Lines beginning
with a comment string (see Section 2.7.3) are considered to be comments and are
not scanned for declarations. White space on source lines is kept and blank input
lines will result in blank output lines.

6.3.1 Normal Declaration Mode

In the normal mode of data item declaration, the first potential data item in each
line of the body is declared to be an actual data item. Anything following the data
item on the line is taken as commentary. Thus, in the line

CType is the type of the command

“CType” will be declared to be a data item.

6.3.2 Special Declaration Mode

In the special declaration mode, a potential data item is declared as an actual
data item only if it contains a data character. If the data character is the first
character of the potential data item, it is not included as part of the name of the
actual data item.

At the start of each data segment, the normal declaration mode is in effect.
The special declaration mode can be established for that segment by the command

%SDMode

and the normal declaration mode can be re-established by the command

22 PDL/81 Design Language Reference Guide

%NoSDMode

As an example, consider the line

Items _c1, file_count, and _open_count are counters

In the special declaration mode, the actual data items will be

c1 file_count open_count

As another example, the lines

*********************************//*******************
* * * *
* _code * _count * record_text *
* * * *
*********************************//*******************

will declare “code”, “count”, and “record_text” to be actual data items.

7. Flow Segments

A flow segment presents, in a program-like form, the procedural flow of a portion
of a design. Generally, each flow segment represents a procedure in the program.
A flow segment is introduced by the command

%Segment text

or

%S text

where text is a sequence of characters which represents the name of the segment.
The name will appear at the top of the segment page. That portion of the name up
to the first comment string (see Section 2.7.3) will be placed in the table of con-
tents and will be saved in a dictionary for indexing purposes. In saving the name
in the dictionary, leading and trailing blanks are removed and each sequence of
imbedded blanks is collapsed into a single blank. Some examples are:

 Command Saved Name

 %Segment System Start System Start
 %S Install in Data Base (Name, Type) Install in Data Base
 %Segment Search Dictionary (Name) Search Dictionary

7.1 Flow Segment Body

The body of a flow segment is composed of one or more lines. These lines are
known as statements to emphasize the relation between a flow segment and a pro-
cedure in a programming language.

A statement may start anywhere on a line. PDL/81 will correctly format and
indent each statement on output and may supply various forms of visual enhance-
ment to the printed line. Leading blanks will be removed and each sequence of
imbedded blanks will be replaced by a single blank. Blank input lines will be ig-

- 23 -

24 PDL/81 Design Language Reference Guide

nored. Statements which are too wide to fit in the segment box will be automati-
cally continued when printed.

This automatic formatting means that there is no need for the designer to do
any special formatting of the flow segment input lines. In fact, each statement is
normally just typed flush left on the input line and layout is left to PDL/81.

With the exception of the special statements discussed in Section 7.4, the con-
tents of a statement may be anything desired. Some examples are:

Count = Count + 1
Increment Count
Bump Count to reflect/
the record just processed

Note that, since “/” is the continue character (see Section 2.4.2), the last two lines
of this example are equivalent to:

Bump Count to reflect the record just processed

7.2 Reference Recognition

Each statement in a flow segment, except for a statement which begins with a
comment string (see Section 2.7.3), will be scanned to see if it is the name of a flow
segment. If a statement begins with a keyword (see Section 7.4), the scan begins
following the keyword and any subsequent secondary keywords. The scanning
stops at the first comment string.

In any match, leading and trailing blanks are removed, each sequence of
imbedded blanks is replaced by a single blank, and the case (upper, lower, mixed)
of all letters is ignored.

Lines beginning with comment strings in data segments and flow segment are
normally not scanned for data item definitions or references or for flow segment
references. Scanning can be specified in this case by the command

%CData

and may be inhibited by the command

%NoCData

If used, these commands should appear before the first segment.

7.3 Labels

It is occasionally desirable to place labels in a design. They are convenient for de-
noting statement sequences in DO CASE constructs (see Section 7.4.3.7) and in
supplying names for DO constructs for use with UNDO and CYCLE statements
(see Section 7.4.3.3 and Section 7.4.3.4).

Chapter 7: Flow Segments 25

If a colon (“:”) is encountered before the first blank in a statement, that state-
ment is considered to be a label. The statement will be printed one indentation
level to the left of the current indentation level. Anything following the colon on
the same line will be treated as commentary. Some examples of labels are:

MainSearchLoop:
END_OF_FILE:
+,-,*:
+:
"other":

7.4 Special Statements

The so-called special statements comprise the flow-of-control statements in the
PDL/81 procedural language. This section describes each of the special
statements.

7.4.1 Keywords and Secondary Keywords

Each special statement begins with a keyword followed by a blank or the end of
the input line. The keywords, grouped generally as used, are

IF ELSEIF ELSE ENDIF
DO UNDO CYCLE ENDDO ENDO
RETURN

The particular keyword which starts a statement determines the indentation level
for that and subsequent statements. A word is considered to be a keyword only
when it is the first word of a statement.

There is also a set of so-called secondary keywords which are recognized as
such only when immediately following a keyword or a secondary keyword. The
secondary keywords are

IF WHILE FOREVER CASE UNTIL FOR
NOT

The case (upper, lower, mixed) of keywords and secondary keywords is ignored.

The keywords and secondary keywords discussed above are those defined in
the design style as distributed. New project-wide keywords and secondary key-
words may be added by modifying the style file. Additions can also be made for a
single design as described in Appendix C.

26 PDL/81 Design Language Reference Guide

NOTE

Keywords in PDL/81 are used only to change the indentation level.
The processor in no way checks for correct use. However, error mes-
sages will appear in the design document if a keyword attempts to cre-
ate a negative indentation level or if a flow segment ends with a posi-
tive indentation level. These messages may be surpressed when the
PDL/81 processor is installed.!

7.4.1.1 Keyword Enhancement

The form in which a keyword or secondary keyword is printed depends on the use
of various commands described in this section. These commands, if used, should
appear before the first segment. Initially, keywords and secondary keywords are
printed in upper case regardless of the case in which they are entered.

The command

%LCase

causes keywords and secondary keywords to be printed in lower case regardless of
the case in which they are entered.

The command

%SCase

causes keywords and secondary keywords to be printed in the same case in which
they were entered.

For compatibility with older versions, the command

%NoLCase

also specifies that keywords are to be printed in the same case in which they are
entered. The preferred method of accomplishing this is to use the “SCase” com-
mand described above.

The command

%UCase

causes keywords and secondary keywords to be printed in upper case regardless of
the case in which they were entered. This is the default setting.

Chapter 7: Flow Segments 27

The command

%UScore

causes each keyword and secondary keyword to be underscored when printed.

The command

%NoUScore

specifies that each keyword and secondary keyword is not to be underscored when
printed. This is the default setting.

Flexibility in font selection is provided by the command

%KWFont n

where n is a font number:

0 base font (no special treatment except for possible conversion to upper case
or lower case under control of the %UCASE or %LCASE commands).

1 underscored (same effect as obtained by the %USCORE command).

2 bold face (only if supported by your installation on the selected device).

7.4.2 The IF Construct

The IF construct consists of the keywords IF, ELSEIF, ELSE, and ENDIF. In its
simplest form, it can be written as:

IF condition
 sequence
ENDIF

which implies that the statements comprising “sequence” are only to be executed
if “condition” is true.

The basic form can be expanded by adding an alternate as in:

IF condition
 sequence-1
ELSE
 sequence-2
ENDIF

which implies that “sequence-1” is to be executed if “condition” is true and that
“sequence-2” is to be executed if “condition” is false.

28 PDL/81 Design Language Reference Guide

Multiple IF constructs can be nested as in:

IF condition-1
 sequence-1
ELSE
 IF condition-2
 sequence-2
 ELSE
 sequence-3
 ENDIF
ENDIF

Since nested IF constructs are quite common, an alternate form can be used as in:

IF condition-1
 sequence-1
ELSEIF condition-2
 sequence-2
ELSE
 sequence-3
ENDIF

Thus, the general form of the IF construct is

1. an IF

2. zero or more ELSEIF’s

3. zero or one ELSE

4. an ENDIF

7.4.3 The DO Construct

The DO construct consists of the keywords DO, ENDDO, CYCLE, and UNDO.
The word “ENDO” is considered an alternate spelling of “ENDDO”. The DO con-
struct is used to produce flow figures of the general form:

DO iteration or selection criteria
 statement
 statement

ENDDO

The iteration or selection criteria may be arbitrarily chosen. The remainder of
this section presents examples of the more commonly used criteria.

7.4.3.1 The DO WHILE Construct

This form of the DO construct implies iteration as long as some given condition re-
mains true. No iteration at all would be performed if the condition is initially
false. It can be written as:

Chapter 7: Flow Segments 29

DO WHILE
 statement
 statement

ENDDO

Some examples of possible conditions are:

DO WHILE there is source input remaining
DO WHILE the current character is a space
DO WHILE there is room in the table

7.4.3.2 The DO UNTIL Construct

This construct implies iteration until some condition becomes true and, further,
implies that at least one iteration will always be performed. It can be written as:

DO UNTIL condition
 statement
 statement

ENDDO

Some examples are:

DO UNTIL table is full
DO UNTIL last record is read
DO UNTIL source is depleted

7.4.3.3 The UNDO Statement

The UNDO statement is used to indicate that control should pass to the statement
immediately following the ENDDO of the current DO construct, thus causing pre-
mature exit from the loop. It might be used in the following context:

DO WHILE source input remains
 process next source line
 IF dynamic memory is full
 UNDO
 ENDIF
ENDDO

An alternate form of the UNDO statement is:

UNDO IF condition

which can make the design more concise as in:

DO WHILE source input remains
 process next source line
 UNDO IF dynamic memory is exhausted
ENDDO

When DO constructs are nested, it may sometimes be necessary to indicate a pre-
mature exit from an outer loop. This is most easily shown by labelling the outer
DO and writing

30 PDL/81 Design Language Reference Guide

UNDO label

7.4.3.4 The CYCLE Statement

The CYCLE statement indicates premature transfer of control to the loop test or
selection point – that is, to a point just before the ENDDO statement which termi-
nates the loop. The most commonly used forms of the statement are:

CYCLE
CYCLE IF condition
CYCLE label

7.4.3.5 The DO FOREVER Construct

The simplest form of loop is written as:

DO FOREVER
 statement
 statement

ENDDO

which implies continuous repetition until something (either in the loop or an out-
side event) causes an exit. Thus the body of the loop should usually contain an
UNDO or a RETURN statement.

7.4.3.6 The DO FOR Construct

This construct is used for selecting items from some list or sequence. Its general
form is:

DO FOR selector
 statement
 statement

ENDDO

The actual selector can be chosen to be as meaningful as possible to the designer
and reader. Examples are:

DO FOR each table entry
DO FOR each element in the Positions array
DO FOR all nodes in the tree
DO FOR all "interesting" entries in the dictionary

7.4.3.7 The DO CASE Construct

The DO CASE construct is used to select one of a group of actions according to a
given selection criterion. The meaning of the construct is clearest if each action is
given a label as in:

Chapter 7: Flow Segments 31

DO CASE selector
label-1:
 sequence-1
label-2:
 sequence-2

label-n:
 sequence-n
ENDDO

Examples of DO CASE statements are:

DO CASE of command name
DO CASE switch setting
DO CASE error message number

7.4.3.8 Other Possible DO Constructs

The various DO constructs described above are only examples of the most common
ones. The designer is perfectly free to invent some other form to fit the needs of a
particular design. For example,

DO in parallel

might introduce a collection of labelled sequences which are to be executed in par-
allel, with synchronization automatically assured before proceeding past the
ENDDO statement. As another example,

DO with interrupts disabled

might be used to introduce a sequence in which interrupts are not allowed.

7.4.4 The RETURN Statement

Normally, a flow segment will “return” to its “caller” when control reaches the end
of the segment. However, the RETURN statement can be used to indicate prema-
ture exit from a flow segment. As with UNDO and CYCLE, the form

RETURN IF condition

is often useful. Some examples of RETURN statements are:

RETURN
RETURN IF end has been reached
RETURN Symbol’s Value
RETURN "Illegal Reference"

8. External Segments

It is frequently desirable to collect references to flow segments which are not part
of the current design document. These might, for example, represent operating
system services or utility operations which are defined in other design documents.
Such segments are known as external flow segments and are declared in external
segments.

An external segment is introduced by the command

%External text

or

%E text

where text is a sequence of characters to be used as the title of the external seg-
ment. The title will be displayed at the top of the external segment page and will
be entered in the table of contents. Note that the “External” or “E” commands do
not, themselves, declare external flow segments – they introduce segments within
which external flow segments will be declared.

Examples of these commands are:

%External Basic Utilities
%External I/O Support Services
%E General Storage Management Functions

The body of an external segment consists of statements, each of which represents
the name of a flow segment not defined elsewhere in the design document. Each
statement is scanned as if it were the argument of a “Segment” command (see
Chapter 7) and the resulting name is entered into the dictionary as the name of a
flow segment. If a statement begins with a comment string (see Section 2.7.3), no
scanning is performed.

- 33 -

34 PDL/81 Design Language Reference Guide

White space on input lines is kept and blank input lines produce blank output
lines.

An example of the input form of an external segment is:

%External Low-Level I/O Operations
Open File (file-name)
Close File (file-id)
Read (file-id, into, max-bytes)
Write (file-id, from, count)

9. Text Functions

Text functions are used to insert special information into a design or to perform
some kind of textual modification. They are most commonly used in text segments
but may appear in any type of segment.

The general form of a text function invocation is

#{name[;argument;argument;...]}

where name is the name of the text function and the arguments depend upon the
requirements of the particular function. If an argument to a text function contains
any of

#{ { } ;

each must be preceded by an escape character (“\”) as described in Section 2.4.3.
The entire text function invocation must appear on a single (possibly continued)
source line.

9.1 The DATE Text Function

The date on which the current run of PDL/81 was started may be obtained by

#{date}

which will be replaced by the date in the same form as it appears at the top of
each page of the design. For example, the line

The current date is #{date}

will be printed as

The current date is 12 December 1991

- 35 -

36 PDL/81 Design Language Reference Guide

9.2 Underscoring of Text

Keywords and secondary keywords in flow segments may be automatically under-
scored by use of the “UScore” command as described in Section 7.4.1.1. Other text
may be underscored by

#{us;text}

which causes each non-blank character in “text” to be underscored and by

#{uc;text}

which causes each character in “text” to be underscored. For example,

this #{us;is under}scored and #{uc;so is this}

will print as

this is underscored and so is this

If bold face output is supported at your installation on the selected device, the text
function

#{bf;text}

will print text in bold face,

#{bfu;text}

will print text in bold face with non-blank characters underscored, and

#{bfuc;text}

will print text in bold face with all characters underscored.

9.3 Tags and References

A tag is a symbol which can be used to mark a particular point in a design and is
declared by

Chapter 9: Text Functions 37

%Tag symbol

where symbol is the name of the tag. The output page number corresponding to
the location of the tag will be associated with the tag and may be retrieved by the
text function

#{ref;symbol}

For example, if the command

%Tag test

appeared at a point which was to be printed on page five of the design document,
the line

See page #{ref;test} for a description.

would print as

See page 5 for a description.

10. Listing Control Commands

This chapter describes a number of commands which are used to control various
aspects of the listing of the design document.

10.1 Specifying Design Titles

The title of the design may be specified by commands of the form

%Title text

where text is any sequence of characters. Several “Title” commands may be used
in a single design. The text of these commands will be placed, centered and boxed,
double spaced, with leading and trailing blanks removed, on the cover page of the
design document. In addition, the text of the first “Title” command will be capital-
ized and placed at the top of each design page unless a “Ptitle” seePDL/81 Design
Language Reference Guide command is used.

Some examples are:

%Title Fortran Compiler: Pass 3
%Title Tree Transformation Phase

The “Title” commands should appear before the first segment.

10.1.1 Defining a Page Head

The command

%PTitle text

will cause the text to be used as the running page head for the design. If this is
not used, the running head will be the text of the first %Title command.

- 39 -

40 PDL/81 Design Language Reference Guide

10.2 Specifying the Listing Date

Normally, the date on which the current PDL/81 run was started is the date dis-
played on the design title page and at the top of the other pages of the design and
is the date returned by the “date” text function (see Section 9.1). The date may be
changed by the command

%Date string

where the first nine characters of string will be used as the date. No checking is
performed on this substitute date and it will be used as is in place of the system
date.

Some examples are:

%Date 6 May 91
%Date 6.5.91
%Date 5/6/91
%Date 91/06/05

If used, the “Date” command should appear before the first segment.

10.3 Specifying Security Banners

A security banner will be placed at the top and bottom of each output page by the
command

%Security classification

where classification is a word or phrase specifying the security classification of the
design document. The command

%Project text

specifies “text” to be a project identification word or phrase to be included in the
security banner. The “Project” command will be ignored in the absence of a
“%Security” command. Both of these commands, if used, should appear before the
first segment.

In addition to the security classification and optional project name, each secu-
rity banner will contain a sequential sheet number for document control purposes.
These numbers start at “one” for the title page and are incremented by one for
each sheet printed. They are independent of the page numbers assigned by
PDL/81 for reference purposes. The last page of the design will contain a count of
the total number of sheets printed.

As an example, the security banners which appear on the sample design at the
end of this manual were specified by

Chapter 10: Listing Control Commands 41

%Security UNCLASSIFIED
%Project PDL/81 SAMPLE DESIGN

10.3.1 Security Banner Style

The format of security banners may be changed to reflect various standards.

By default, banners will have the classification centered, the sheet number on
the right, and the project identification on the left. This mode is known as Secu-
rity Style 0.

Security style 1 is the same as zero except that the sheet number will appear
on the left and the project identification will appear on the right on even num-
bered sheets. This is useful when printing duplexed designs.

Security style 2 places the project identifiaction in the center, the classification
on the left (right on bottom banner), and the sheet count on the right (left on bot-
tom banner).

The default security style may be changed by editing the style files. On a per-
document basis, the command

%SecStyle number

where the number is one of the security styles (0, 1, or 2) will set the security style
in a design.

10.4 Specifying “Special” Boxes

Experience has shown that designs are often printed on serial printers since such
printers are available with compressed type fonts which allow a full-width design
to be printed on 8-1/2 by 11 inch paper. These printers can be very slow, however,
when printing designs because of the large amount of white space which may ap-
pear between the end of a statement and the right edge of the segment box. The
command

%SBox

specifies that the right edge of all boxes is not to be printed. This usually results
in faster printing during the draft stage.

The command

%NoSBox

specifies that the right edge of all boxes is to be printed (the default case).

If either of these commands is used, it should appear prior to the first
segment.

42 PDL/81 Design Language Reference Guide

10.5 Specifying Line Number Printing

The PDL/81 processor does not normally display source line numbers in the de-
sign document. This can be changed by the

%LNO

which causes source line numbers to appear to the right of the segment box. Not
all lines will be numbered. The display of line numbers may be stopped by

%NOLNO

10.6 Specifying Change Bars

Change bars, which appear on the right of segment boxes, can be displayed by the
command

%MC char

where char is a single character to be used as the change bar. If char is absent,
the display of change bars is stopped.

For example, bracketing a section of changed design with

%MC |

and

%MC

will cause the character “|” to be used as a change bar for that section of the de-
sign.

11. Advanced Features

This chapter describes several advanced features of the design style including:

• Cyclomatic complexity measurement and reporting;

• Automatic requirements tracking;

• Consistency checking;

• Flow figure enhancement;

• Maintaining design and code in the same file.

11.1 Complexity Analysis

This version supports a form of cyclomatic complexity measurement based on the
work of McCabe (A Complexity Measure, McCabe, Thomas J., IEEE Transactions
on Software Engineering, Vol SE-2, No 4, Dec 1976). It performs this measure-
ment by assigning a complexity value to certain keywords and secondary key-
words and summing these values for each flow segment – the higher the value,
the more complex the segment.

The complexity for each flow segment is printed on the segment’s output page
and in the Index of Flow Segments (Section 12.3). If a segment’s complexity ex-
ceeds some specified value (6, by default), a warning message is issued on the
standard output and also appears on the segment’s output page. An index to such
overly complex segments is also printed (Section 12.4). Finally, various complexity
statistics are given on the summary page at the end of the design document.

11.1.1 Complexity Measurement Commands

The command

%Complexity [max]

specifies that complexity measurement is to be performed. If max is given, it
should be an integer constant giving the maximum allowable complexity to use in-
stead of the default value of 6.

- 43 -

44 PDL/81 Design Language Reference Guide

The command

%NoComplexity

specifies that complexity measurement is not to be performed.

11.2 Automatic Requirements Tracking

Information about requirements are input by the command

%Req r1;r2;...;rn

or

%R r1;r2;...;rn

where each of the “ri” is a paragraph number of a requirement taken from the con-
trolling requirements document. When used with DOD-STD 2167, this might be
the Software Requirements Specification, DI-MCR-80025. The paragraph numbers
must have the general form of section and subsection identifiers separated by dec-
imal points. Such an identifier is a decimal integer optionally prefixed by an al-
phabetic string. Examples are

3.5.6 3.9.6.2 R4.2 4.6.R3.2

If a segment has associated requirements, the %R commands for the segment
must immediately follow the segment command (e.g., %S, %D, %T). When a seg-
ment which references requirements is printed, the associated requirements will
be displayed following the segment box.

11.2.1 Requirements Index

Optionally, an index of all requirements and their associated segments may be
printed. This is accomplished by using the command

%RIndex

If this action is established as the default during installation, it may be sup-
pressed by the command

%NoRIndex

Chapter 11: Advanced Features 45

11.3 Consistency Checking

This release provides for consistency checking of segment references in a style
that is in the spirit of PDL/81. This is done by optionally producing a report
known as the Calls-In-Context List which shows each flow segment definition and
a listing of each line that calls that segment. Those calls which appear to be in-
consistent in number of arguments with the definition are flagged in the report.
For the purpose of this report, an argument list is assumed to be enclosed in
parentheses and arguments are separated by zero-level (with respect to parenthe-
ses and single and double quotation marks).

The report is requested by the command

%CiC

If this action is established as the default during installation, it may be sup-
pressed by the command

%NoCiC

11.4 Flow Figure Enhancement

The command

%KwV

specifies that the beginning and end of each flow figure will be connected by a se-
ries of a predetermined character. This may be turned off by the command

%NoKwV

A default character and font may be established by editing the style and/or de-
vice definition files. The character and font may be chosen on a per-device basis so
that advantage may be taken of any specialized device characteristics (e.g., a line-
drawing character set).

The character and font may be set on a per-design basis by the command

%KwVC char[;font-expr]

If the font is not specified, the base font will be used.

46 PDL/81 Design Language Reference Guide

11.5 Design and Code in the Same File

This new feature of PDL/81 allows maintaining both the design and the code for a
program in the same file. Code sequences, known as code segments, are intro-
duced by the command

%Code [file-name]

where file-name is the name of a file to receive this code when code selection is en-
abled. If the file name is not specified, the code will be written to the file name
given in the last preceding %Code command that had a file name or, if none such
exist, to the file specified by the last preceding

%CodeFile [file-name]

command. If no file name is in effect, code is written to the standard output.

During normal runs of PDL/81, code segments are not output; rather, they are
completely skipped. To cause code segment selection, invoke PDL/81 with the
“GetCode” number register set as in

pdl81 -rGetCode file

As a final option, a normal design run of PDL/81 can be made with code seg-
ments being displayed in the output document. This is accomplished by invoking
PDL/81 with the “ShowCode” number register set as in

pdl81 -rShowCode file

If this is done, code segments may not contain sequences which look like invoca-
tions of Format Design Language functions.

12. Processor Reports

Several types of reports can be printed which provide information about the con-
tent and structure of the design. The designer may choose the specific reports to
be included.

12.1 Segment Reference Trees

This report shows the nesting of flow segment references. A separate tree is
printed for each root segment, which is a flow segment that is not referenced by
any flow segment but which, itself, references at least one flow segment. If there
are no such root segments, an arbitrary choice will be made.

When a segment is referenced recursively, its name is prefixed by an asterisk
and the recursion is not further traced.

The presence or absence of this report is controlled by the command

%Tree

which specifies that the report is to be printed, and by

%NoTree

which specifies that the report is not to be printed.

A special abbreviated form of the trees can be selected by the command

%STree

In these so-called short trees, only the first occurrence of each subtree is printed.
For subsequent occurrences, only the name of the first segment in the subtree will
be printed, prefixed with a minus sign (“-”).

- 47 -

48 PDL/81 Design Language Reference Guide

If any of these commands are used, they should appear before the first seg-
ment. The default setting is “STree”.

12.2 Data Item Index

The data item index shows each data item which was implicitly or explicitly de-
clared in the design and the locations in the design where each is referenced. The
data item index is requested by

%DIndex

and is inhibited by

%NoDIndex

If either of these commands is used, it should appear before the first segment. The
default setting is “DIndex”.

12.3 Flow Segment Index

The flow segment index lists all flow segments (both internal and external) in the
design. For each, it shows the location of its definition and the segment names
and locations of all references to it.

The flow segment index is requested by

%SIndex

and is inhibited by

%NoSIndex

If either of these commands is used, it should appear prior to the first segment.
The default setting is “SIndex”.

12.4 Index of Overly Complex Segments

If complexity measurement is enabled (Section 11.1), this index will be printed if
any segments excede the predefined maximum allowable complexity. By default,
this value is 6.

The index will show the complexity, type, location, and name of each segment
with too high a complexity.

Chapter 12: Processor Reports 49

12.5 Index to Requirements

If requirements tracking is enabled (Section 11.2), an index of requirements will
be printed. This index will be sorted by requirement and will show the location
and name of each segment that addresses that requirement.

12.6 Calls-in-Context List

When enabled (Section 11.3), this listing will show each procedure or function call
together with its definition. Inconsistent usage will be flagged.

A. Error Messages

This Appendix lists error messages which may be issued during processing of a
design. Error messages are displayed on the standard error file. If applicable, the
message will be prefixed with the name of the current input file and the current
line number within the file.

A.1 Non-Terminal Error Messages

The error messages described in this section do not cause termination of PDL/81
processing:

• COMMAND INVALID OUTSIDE OF SEGMENT – this command may only
appear within a segment.

• COMMAND INVALID OUTSIDE OF TEXT SEGMENT – this command
may only be used within a text segment.

• DUPLICATE DATA ITEM: <item> – the named item has been previously
defined as a data item.

• DUPLICATE ENTRY POINT: <name> – the given name has previously
been defined as the name of a flow segment or of an entry point.

• DUPLICATE GLOBAL NAME: <name> – the given name has already been
declared as global in a Specification segment.

• DUPLICATE NAME: <name> – the given name, which appears as the argu-
ment of a “Procedure” or “Function” command, has been previously defined
as the name of a flow segment.

• DUPLICATE TAG: <name> – the given name has been previously defined in
another “Tag” command.

• ENDING KEYWORD WITH NO OPEN FLOW FIGURE – an ending key-
word, such as ENDIF, was encountered but a flow figure is not open for it to
close.

• FLOW FIGURE NOT CLOSED AT END OF SEGMENT – a flow figure is
still open when the end of a segment was encountered.

• INVALID CHARACTER IN LINE – an input line contains an ASCII control
character other than “tab” or “newline”.

- 51 -

52 PDL/81 Design Language Reference Guide

• NAME MISSING – a name was not provided for a group or a segment.

• REQUIREMENTS MUST BE PART OF A SEGMENT – A “Req” or “R” com-
mand has been encountered but it is precedes the first segment or immedi-
ately follows a “Group” statement.

• SEGMENT TOO COMPLEX – the cyclomatic complexity of the segment is
greater than the allowable maximum.

• TEXT OUTSIDE OF SEGMENT – a source line which was not a command
appeared outside of a segment. A generated “Segment” command will be in-
serted.

• UNBALANCED BRACKETS – the number of unescaped left brackets is not
the same as the number of unescaped right brackets within a call on a text
function.

• UNDEFINED TAG: <name> – the given name was referenced in a “Ref” text
function but did not occur also in a “Tag” command.

• UNKNOWN COMMAND – a command name on a command line is not one
of those recognized by PDL/81.

A.2 Terminal Error Messages

The error messages described in this section cause immediate termination of
PDL/81 processing:

• CAN’T OPEN TEMP FILE <file name> – the named temporary file cannot
be opened. This usually means that disk space is not available for the file or
that write access privileges are not available in the directory on which the
file is to be written.

• CANNOT ALLOCATE DYNAMIC MEMORY FOR A BUFFER – Memory
was needed for an input/output buffer, but insufficient memory was avail-
able.

• DYNAMIC MEMORY OVERFLOW (n) – all available dynamic memory is
allocated and more is needed. The character “n” indicates the particular
point in the processor where overflow was detected and is of interest only to
PDL/81 processor maintenance personnel.

• MKTEMP: CANNOT GENERATE UNIQUE FILE NAME: <file name> –
Names of PDL/81 temporary files are generated by the internal PDL/81
“mktemp” function. This function can generate up to 26 unique names for
each invocation of PDL/81. Since names will be reused when possible, and
since PDL/81 deletes temporary files after they are closed, this message usu-
ally means that a large number of temporaries were left around following a
system crash. Examine the directory given in the message and delete the
abandoned temporaries.

• SOURCE FILE NOT GIVEN – a source file was not specified when PDL/81
as invoked.

• UNABLE TO OPEN FILE <file name> – the named file cannot be opened for
input. Possibly, it doesn’t exist.

• UNKNOWN DEVICE TYPE: <name> – the named device type was specified
by an invocation option but no such device is supported.

Appendix A: Error Messages 53

• UNKNOWN INVOCATION OPTION: <option> – the invocation line con-
tained an option which was not recognized by PDL/81.

A.3 Other Error Messages

The error messages described above are those which relate to processing designs
using the design document style. Other messages may be issued but they relate to
internal processing errors or system problems and should not appear when pro-
cessing designs. A more complete list of such messages may be found in the {it
PDL/81 Format Designers Guide}.

B. List of Commands

BL start a “bullet” list

CIC enable calls-in-context index printing

Code start a Code segment

CodeFile define a file to receive extracted code

Complexity enable complexity measurement

CString define comment strings

D start a data segment

Data start a data segment

Date define date for printing purposes

DChar define data characters

DIndex print a data item index

DSChar define data item special characters

E start an external segment

Eject begin a new page of output

External start an external segment

Fill switch to formatted mode in a text segment

G start a group

Group start a group

Heading print a second level heading

Include include source from an alternate file

KWFont specify font in which to print keywords

KWV enable flow figure enhancement

KWVC define character for flow figure enhancement

- 55 -

56 PDL/81 Design Language Reference Guide

LCase print keywords in lower case

Le end a list

LNO start display of source line numbers

MajorHeading print a first level heading

MC start or stop display of change bars

Need assure enough lines remain on a page

NL start a numbered list

NoCIC disable calls-in-context index

NoComplexity disable complexity measurement

NoDIndex do not print data index

NoFill switch to unformatted mode in a text segment

NoKWV disable flow figure enhancement

NOLNO stop display of source line numbers

NoRindex disable requirements index

NoSBox do not print special boxes

NoSIndex do not print a flow segment index

NoTree do not print reference trees

NoUScore do not underscore keywords

Project specify name of project for security banners

PTitle define running page title

R specify requirements

Req specify requirements

Rindex enable requirements index

S start a flow segment

SBox use special segment boxes

SCase print keywords in same case as entered

SecStyle specify style of security banners

Security specify security classification of design

Segment start a flow segment

SIndex print flow segment index

Space space a given number of blank lines

STree print short reference trees

SubHeading print a third level heading

T start an unformatted text segment

Tag define a tag

Appendix B: List of Commands 57

Text start an unformatted text segment

TextF start a formatted text segment

TF start a formatted text segment

Title specify design titles

Tree print reference trees

UCase print keywords in upper case

UScore underscore keywords

Verb put a verb in a verb list

VL start a verb list

C. Adding New Keywords

Project-wide keywords and secondary keywords can be added by modifying the
style file for the particular design style being used. New keywords and secondary
keywords for use in a single design can be defined by the functions defined in this
Appendix.

C.1 Defining Primary Keywords

The “kw” function defines new keywords and has the form

#{kw;name;pre;post;complexity;class;code;flags}

where the arguments are

name the keyword name.

pre optionally signed integer giving the number of indentation stops to
indent prior to printing the line which begins with the keyword.

post optionally signed integer giving the number of indentation stops to
indent after printing the line which begins with the keyword.

complexity integer specifying the cyclomatic complexity associated with this key-
word.

class used in flow figure checking (Section C.3).

code used in flow figure checking (Section C.3).

flags flags to associate with the keyword. The only currently defined flags
is “1” which suppresses reference collection for the remainder of the
line which starts with the keyword.

For example, the function

#{kw;case;-1;1}

will define “case” to be a keyword which will be printed one stop to the left of the
current position. Following lines will be printed one stop to the right of the posi-

- 59 -

60 PDL/81 Design Language Reference Guide

tion in which the keyword is printed. With this definition, the sequence

do case type
case open:
...
case close:
...
case delete:
...
enddo

will result in

DO CASE type
CASE open:
 ...
CASE close:
 ...
CASE delete:
 ...
ENDDO

C.2 Defining Secondary Keywords

Secondary keywords are defined by the “skw” function which has the form

#{skw;name;complexity}

where the arguments are

name the keyword name.

complexity integer specifying the cyclomatic complexity associated with this key-
word.

For example

#{skw;loop}

will define “loop” to be a secondary keyword. Note that a word may be both a key-
word and a secondary keyword.

C.3 Keyword Classes and Codes

Flow figure checking is controlled by class/code pairs which are associated with
each keyword. These pairs are defined using the “kw” text function.

The classes are used to distinguish between flow figures and are positive num-
bers. The codes are used to distinguish among types of keywords within a given
flow figure and are in the range 0–5, inclusive. The codes are used to access the
state table

Appendix C: Adding New Keywords 61

 0 1 2 3 4 5

 0 0 1 4 5 5 5
 1 0 1 2 3 3 3
 2 - - - - - -
 3 0 1 2 6 3 3
 4 0 1 2 6 3 3
 5 0 1 2 6 6 6

where the column headings correspond to the code of an incoming keyword, the
row headings correspond to the code at the top of the keyword stack, and the table
entries are actions to be performed.

The codes may be thought of as corresponding to

0 As an incoming keyword, this is one that doesn’t make any change in the
structure (such as RETURN or UNDO). Since these are never pushed on
the stack, a code of 0 on the stack means the stack is empty.

1 A figure-opening keyword (such as DO or IF).

2 A figure-ending keyword (such as ENDDO or ENDIF).

3 An intermediate keyword that may only occur once following a
figure-opening keyword.

4 An intermediate keyword that may occur any number of times after a code 2
or 3 keyword. ELSEIF is an example.

5 An intermediate keyword that may occur once after a code 2, 3, or 4 key-
word and may not be followed by a code 3 or 4 keyword. ELSE is an exam-
ple.

A separate class should be assigned to each flow figure. For example, the
IF...ENDIF figure might be class 1 and the DO...ENDDO figure might be class 2.

The actions are

0 Do nothing.

1 Push the class and code of the incoming keyword onto the stack.

2 If the incoming class matches that on the top of the stack, pop the stack.
Otherwise, issue an error message.

3 If the incoming class matches that on the top of the stack, pop the stack and
push the class and code of the incoming keyword onto the stack. Otherwise,
issue an error message.

4 Issue an error message.

5 Issue an error message.

6 Issue an error message.

62 PDL/81 Design Language Reference Guide

C.4 Placement of Keyword Definitions

Uses of the “kw” and “skw” functions should appear, one per line, prior to the first
segment in a design.

D. Sample PDL/81 Design

This Appendix presents a short example of a PDL/81 design. It is followed by a
listing of the input source which resulted in the design listing.

D.1 Design of an Automobile Cruise Control System

This sample presents a top-level design of a mythical automobile cruise control
system. It illustrates many of the PDL/81 features used in a typical design. Note
that security banners are used to illustrate the distributed format. Of course, the
format can be easily changed to suit the requirements of a particular program.

D.1.1 Output of PDL/81 Processor

Beginning on the next page is the actual output of the PDL/81 processor when
presented with the source shown in Section D.2.

- 63 -

64 PDL/81 Design Language Reference Guide

 CAINE, FARBER & GORDON, INC.
 1010 EAST UNION STREET
 PASADENA, CALIFORNIA 91106

 **
 * *
 * An Automobile Cruise Control Example *
 * *
 * 21 Jan 92 *
 * *
 * PDL/81 X2.0.911 *
 * *
 * 5500-PD8 *
 * *
 **

Appendix D: Sample PDL/81 Design 65

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 1.001
21 Jan 92 TABLE OF CONTENTS

TABLE OF CONTENTS

Requirements . 2

 Statement of Problem . 3

Cruise Control and Monitoring . 4

 Main Program Task . 5
 Initialize Asynchronous Determine Speed Task 6
 Determine Speed Task . 7
 Measure Mile . 8

Control Speed . 9

 Control Speed . 10
 Get New Current State . 11
 Maintain Speed . 12
 Increase Speed . 13
 Pedal Override . 14

Monitor Automobile . 15

 Monitor Automobile . 16
 Compute Trip Average . 17
 Compute Miles Per Gallon . 18
 Lookup Maintenance Schedule . 19
 Maintenance Data . 20
 Display Number . 21

Segment Reference Trees . 22

Index to Data Items . 23

Index to Flow Segments . 24

Index to Overly Complex Segments . 25

Index to Requirements References . 26

Calls-In-Context List . 27

66 PDL/81 Design Language Reference Guide

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 2
21 Jan 92

 * *
 * Requirements *
 * *

Appendix D: Sample PDL/81 Design 67

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 3
21 Jan 92 Requirements

 Statement of Problem

 ###
 # #
 # 1 Design a combined automobile cruise control and trip computer #
 # 2 with the following characteristics: #
 # 3 #
 # 4 1. Display Fuel Consumption Rate #
 # 5 #
 # 6 1.1 Each time fuel is added, the driver enters the #
 # 7 amount added and the system computes and #
 # 8 displays the consumption. #
 # 9 #
 # 10 2. Display Average Speed #
 # 11 #
 # 12 2.1 Each time the driver requests an average speed, #
 # 13 the system displays the average speed since the #
 # 14 "trip start". #
 # 15 #
 # 16 2.2 The driver may set "trip start". #
 # 17 #
 # 18 3. Display Maintenance Messages #
 # 19 #
 # 20 3.1 Oil and oil filter change every 5000 miles. #
 # 21 #
 # 22 3.2 Air filter change every 10000 miles. #
 # 23 #
 # 24 3.3 Major service every 15000 miles. #
 # 25 #
 # 26 3.4 Display intermittent message 250 miles before #
 # 27 service required. #
 # 28 #
 # 29 3.5 Display continuous message 50 miles before #
 # 30 service required. #
 # 31 #
 # 32 3.6 The driver informs the system when service #
 # 33 is completed. #
 # 34 #
 # 35 4. Control Cruising Speed #
 # 36 #
 # 37 4.1 The system can control the throttle to maintain #
 # 38 cruising speed. For simplicity, it is assumed #
 # 39 that the brakes will never be needed for speed #
 # 40 control. #
 # 41 #
 # 42 4.2 The cruising speed is the speed the car is #
 # 43 traveling when the cruise control is activated. #
 # 44 #
 # 45 4.3 Activation and Deactivation #
 # 46 #
 # 47 4.3.1 To activate the cruise control, the #
 # 48 engine must be running and the car must #
 # 49 be traveling 30 miles per hour or #
 # 50 faster. #
 # 51 #
 # 52 4.3.2 The cruise control can be deactivated #
 # 53 at any time. #
 # 54 #
 # #

68 PDL/81 Design Language Reference Guide

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 3.001
21 Jan 92 Requirements

 Statement of Problem (continued)

 # #
 # 55 4.3.3 The cruise control is always deacti- #
 # 56 vated when the engine is turned off. #
 # 57 #
 # 58 4.4 Suspension and Resumption #
 # 59 #
 # 60 4.4.1 Operation of the cruise control is #
 # 61 temporarily suspended whenever the #
 # 62 driver uses the accelerator or brake. #
 # 63 #
 # 64 4.4.2 If the cruise control is suspended but #
 # 65 has not been deactivated, the driver #
 # 66 can tell the system to resume operation #
 # 67 and it will return the car to the #
 # 68 cruising speed. #
 # 69 #
 # 70 4.5 The driver can increase cruising speed by #
 # 71 telling the system to increase speed and then #
 # 72 telling it to stop increasing. #
 # 73 #
 # 74 5. Calibration #
 # 75 #
 # 76 5.1 The system must maintain accurate mileage. #
 # 77 This is done by periodic calibration. #
 # 78 #
 # 79 5.2 To calibrate the system, the car is driven over #
 # 80 a measured mile and the driver informs the #
 # 81 system at the beginning and the end. #
 # 82 #
 # 83 5.3 The cruise control must be off during #
 # 84 calibration. #
 # #
 ###

Appendix D: Sample PDL/81 Design 69

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 4
21 Jan 92

 * *
 * Cruise Control and Monitoring *
 * *

70 PDL/81 Design Language Reference Guide

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 5
21 Jan 92 Cruise Control and Monitoring

 Main Program Task

REF (CX = 1)
PAGE ***
 * *
 6 * 1 initialize asynchronous determine speed task *
 * 2 set current_state to inactive *
 * 3 set within_mile to off *
 * 4 DO FOREVER *
 16 * 5 | monitor automobile *
 10 * 6 | control speed *
 8 * 7 | measure mile *
 * 8 ENDDO *
 * *

 Requirements: 1, 2, 3, 4, 5

Appendix D: Sample PDL/81 Design 71

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 6
21 Jan 92 Cruise Control and Monitoring

 Initialize Asynchronous Determine Speed Task

REF (CX = 0)
PAGE ***
 * *
 * 1 set last_time to clock_time *
 * 2 set pulse_counts_per_mile to a default value *
 7 * 3 SPAWN determine speed task *
 * *

 Requirements: 1, 2, 3, 4, 5

72 PDL/81 Design Language Reference Guide

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 7
21 Jan 92 Cruise Control and Monitoring

 Determine Speed Task

REF (CX = 2)
PAGE ***
 * *
 * 1 DO FOR each shaft_rotation *
 * 2 | set current time to clock_time *
 * 3 | set time per rotation to (current time - last_time) *
 * 4 | set last_time to current time *
 * 5 | set distance per rotation to (1/pulse_counts_per_mile) *
 * 6 | set current_speed to (distance per rotation/time per rotation) *
 * 7 | add distance per rotation to cummulative_distance *
 * 8 | IF cummulative_distance is greater than one mile *
 * 9 | | increment current_mileage *
 * 10 | | subtract one mile from cummulative_distance *
 * 11 | ENDIF *
 * 12 ENDDO *
 * *

 Requirements: 1, 2, 3, 4, 5

Appendix D: Sample PDL/81 Design 73

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 8
21 Jan 92 Cruise Control and Monitoring

 Measure Mile

REF (CX = 6)
PAGE ***
 * *
 * 1 IF current_state is not inactive or engine_running is false *
 * 2 | set within_mile to ignore *
 * 3 ELSEIF within_mile is off and measure_signal is on *
 * 4 | set within_mile to on *
 * 5 | reset pulse_counter *
 * 6 ELSEIF within_mile is on and measure_signal is on *
 * 7 | IF there has been a shaft_rotation *
 * 8 | | increment pulse_counter *
 * 9 | ENDIF *
 * 10 ELSEIF within_mile is on and measure_signal is off *
 * 11 | set pulse_counts_per_mile to pulse_counter *
 * 12 | set within_mile to off *
 * 13 ELSEIF measure_signal is off *
 * 14 | set within_mile to off *
 * 15 ENDIF *
 * *

 Requirements: 5

74 PDL/81 Design Language Reference Guide

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 9
21 Jan 92

 * *
 * Control Speed *
 * *

Appendix D: Sample PDL/81 Design 75

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 10
21 Jan 92 Control Speed

 Control Speed

REF (CX = 7) ### SEGMENT TOO COMPLEX ###
PAGE ***
 * *
 * 1 IF there is a driver_request *
 11 * 2 | get new current state *
 * 3 ENDIF *
 * 4 IF current_state is inactive or engine_running is false *
 * 5 | set desired_speed to zero *
 * 6 | set current_state to inactive *
 14 * 7 ELSEIF pedal override *
 * 8 | set current_state to suspended *
 * 9 ELSEIF brake_engaged is true *
 * 10 | set current_state to suspended *
 * 11 ELSEIF current_state is cruising *
 12 * 12 | maintain speed *
 * 13 ELSEIF current_state is accelerating *
 * 14 | IF current_speed is close to or above desired_speed *
 * 15 | | set current_state to cruising *
 * 16 | ELSE *
 13 * 17 | | increase speed *
 * 18 | ENDIF *
 * 19 ENDIF *
 * *

 Requirements: 4

76 PDL/81 Design Language Reference Guide

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 11
21 Jan 92 Control Speed

 Get New Current State

REF (CX = 3)
PAGE ***
 * *
 * 1 DO CASE of driver_request *
 * 2 increase_speed: *
 * 3 | set desired_speed to infinity *
 * 4 | set current_state to accelerating *
 * 5 resume_speed: *
 * 6 | IF desired_speed is not zero or infinity *
 * 7 | | set current_state to accelerating *
 * 8 | ENDIF *
 * 9 maintain_speed: *
 * 10 | IF current_speed is above 30 mph *
 * 11 | | set desired_speed to current_speed *
 * 12 | | set current_state to cruising *
 * 13 | ELSE *
 * 14 | | set current_state to inactive *
 * 15 | ENDIF *
 * 16 inactivate_cruise: *
 * 17 | set current_state to inactive *
 * 18 ENDDO *
 * *

 Requirements: 4.3, 4.4, 4.5

Appendix D: Sample PDL/81 Design 77

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 12
21 Jan 92 Control Speed

 Maintain Speed

REF (CX = 1)
PAGE ***
 * *
 * 1 IF current_speed is much above desired_speed *
 * 2 | ..deceleration is needed *
 * 3 | set throttle_position to closed *
 * 4 ELSE *
 * 5 | set correction to current_speed - desired_speed *
 * 6 | ..normal throttle position is a function of speed *
 * 7 | set throttle_position the normal position plus *
 * 8 | some function of correction *
 * 9 ENDIF *
 * *

 Requirements: 4.1

78 PDL/81 Design Language Reference Guide

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 13
21 Jan 92 Control Speed

 Increase Speed

REF (CX = 0)
PAGE ***
 * *
 * 1 ..normal throttle position is a function of speed *
 * 2 ..acceleration is also a function of speed *
 * 3 set throttle_position to normal position plus acceleration *
 * *

 Requirements: 4.1

Appendix D: Sample PDL/81 Design 79

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 14
21 Jan 92 Control Speed

 Pedal Override

REF (CX = 1)
PAGE ***
 * *
 * 1 ..pedal_deflection is an input *
 * 2 ..throttle_position is an output *
 * 3 IF pedal_deflection is greater than throttle_position *
 * 4 | ..the driver is accelerating *
 * 5 | RETURN true *
 * 6 ELSE *
 * 7 | RETURN false *
 * 8 ENDIF *
 * *

 Requirements: 4.4.1

80 PDL/81 Design Language Reference Guide

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 15
21 Jan 92

 * *
 * Monitor Automobile *
 * *

Appendix D: Sample PDL/81 Design 81

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 16
21 Jan 92 Monitor Automobile

 Monitor Automobile

REF (CX = 0)
PAGE ***
 * *
 17 * 1 compute trip average *
 19 * 2 lookup maintenance schedule *
 18 * 3 compute miles per gallon *
 * *

 Requirements: 1, 2, 3

82 PDL/81 Design Language Reference Guide

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 17
21 Jan 92 Monitor Automobile

 Compute Trip Average

REF (CX = 2)
PAGE ***
 * *
 * 1 IF activate_trip_average *
 * 2 | set trip_mileage to current_mileage *
 * 3 | set trip_clock to clock_time *
 * 4 ELSEIF get_trip_average *
 21 * 5 | display number ((trip_mileage - current_mileage) / (trip_clock *
 * | - clock_time)) *
 * 6 ENDIF *
 * *

 Requirements: 2

Appendix D: Sample PDL/81 Design 83

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 18
21 Jan 92 Monitor Automobile

 Compute Miles Per Gallon

REF (CX = 1)
PAGE ***
 * *
 * 1 IF fuel_added *
 21 * 2 | display number ((last_fuel - current_mileage) / fuel_added) *
 * 3 | set last_fuel to current_mileage *
 * 4 ENDIF *
 * *

 Requirements: 1

84 PDL/81 Design Language Reference Guide

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 19
21 Jan 92 Monitor Automobile

 Lookup Maintenance Schedule

REF (CX = 4)
PAGE ***
 * *
 * 1 IF there is a maintenance_reset_command *
 * 2 | determine maintenance_type from maintenance_reset_command *
 * 3 | set last_reset for maintenance_type to current_mileage *
 * 4 ENDIF *
 * 5 DO FOR each maintenance_type ..oil_filter, air_filter, *
 * | major_service *
 * 6 | set miles_since_maintenance to (current_mileage - last_reset *
 * | for maintenance_type) *
 * 7 | set difference to (maintenance_interval for maintenance_type - *
 * | miles_since_maintenance) *
 * 8 | IF difference is greater than 250 *
 * 9 | | set maintenance_message of maintenance_type to off *
 * 10 | ELSEIF difference is greater than 50 *
 * 11 | | set maintenance_message of maintenance_type to intermittent *
 * 12 | ELSE *
 * 13 | | set maintenance_message of maintenance_type to on *
 * 14 | ENDIF *
 * 15 ENDDO *
 * *

 Requirements: 3

Appendix D: Sample PDL/81 Design 85

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 20
21 Jan 92 Monitor Automobile

 Maintenance Data

 DDD
 D D
 D 1 D
 D 2 maintenance_type is oil_filter, air_filter, major_service D
 D 3 ..the following items are arrays of maintenance_type D
 D 4 maintenance_message D
 D 5 maintenance_interval is 3000, 10000, 15000 D
 D 6 last_reset D
 D 7 D
 D D
 DDD

 Requirements: 3

86 PDL/81 Design Language Reference Guide

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 21
21 Jan 92 Monitor Automobile

 Display Number (number)

REF (CX = 0)
PAGE ***
 * *
 * 1 write the number in decimal to the display *
 * *

 Requirements: 1.1, 2.1

Appendix D: Sample PDL/81 Design 87

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 22
21 Jan 92

 * *
 * SEGMENT REFERENCE TREES *
 * *

88 PDL/81 Design Language Reference Guide

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 22.001
21 Jan 92 SEGMENT REFERENCE TREES

Main Program Task

 LN DEFN SEGMENT
---- ---- -------

 1 5 Main Program Task
 2 6 Initialize Asynchronous Determine Speed Task
 3 7 Determine Speed Task
 4 16 Monitor Automobile
 5 17 Compute Trip Average
 6 21 Display Number
 7 19 Lookup Maintenance Schedule
 8 18 Compute Miles Per Gallon
 9 21 Display Number
 10 10 Control Speed
 11 11 Get New Current State
 12 14 Pedal Override
 13 12 Maintain Speed
 14 13 Increase Speed
 15 8 Measure Mile

Appendix D: Sample PDL/81 Design 89

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 23
21 Jan 92

 * *
 * INDEX TO DATA ITEMS *
 * *

90 PDL/81 Design Language Reference Guide

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 23.001
21 Jan 92 INDEX TO DATA ITEMS

INDEX TO DATA ITEMS

PAGE LINE TYPE NAME AND REFERENCES
---- ---- ---- -------------------

 17 1 ID activate_trip_average
 17 Compute Trip Average
 1

 19 5 ID air_filter
 19 Lookup Maintenance Schedule
 5

 10 9 ID brake_engaged
 10 Control Speed
 9

 6 1 ID clock_time
 17 Compute Trip Average
 3 5
 7 Determine Speed Task
 2
 6 Initialize Asynchronous Determine Speed Task
 1

 7 7 ID cummulative_distance
 7 Determine Speed Task
 7 8 10

 7 9 ID current_mileage
 18 Compute Miles Per Gallon
 2 3
 17 Compute Trip Average
 2 5
 7 Determine Speed Task
 9
 19 Lookup Maintenance Schedule
 3 6

 7 6 ID current_speed
 10 Control Speed
 14
 7 Determine Speed Task
 6
 11 Get New Current State
 10 11
 12 Maintain Speed
 1 5

 5 2 ID current_state
 10 Control Speed
 4 6 8 10 11 13 15
 11 Get New Current State
 4 7 12 14 17

Appendix D: Sample PDL/81 Design 91

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 23.002
21 Jan 92 INDEX TO DATA ITEMS

INDEX TO DATA ITEMS (continued)

PAGE LINE TYPE NAME AND REFERENCES
---- ---- ---- -------------------

 5 Main Program Task
 2
 8 Measure Mile
 1

 10 5 ID desired_speed
 10 Control Speed
 5 14
 11 Get New Current State
 3 6 11
 12 Maintain Speed
 1 5

 10 1 ID driver_request
 10 Control Speed
 1
 11 Get New Current State
 1

 8 1 ID engine_running
 10 Control Speed
 4
 8 Measure Mile
 1

 18 1 ID fuel_added
 18 Compute Miles Per Gallon
 1 2

 17 4 ID get_trip_average
 17 Compute Trip Average
 4

 11 16 ID inactivate_cruise
 11 Get New Current State
 16

 11 2 ID increase_speed
 11 Get New Current State
 2

 18 2 ID last_fuel
 18 Compute Miles Per Gallon
 2 3

 20 6 DI last_reset
 19 Lookup Maintenance Schedule
 3 6

92 PDL/81 Design Language Reference Guide

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 23.003
21 Jan 92 INDEX TO DATA ITEMS

INDEX TO DATA ITEMS (continued)

PAGE LINE TYPE NAME AND REFERENCES
---- ---- ---- -------------------

 6 1 ID last_time
 7 Determine Speed Task
 3 4
 6 Initialize Asynchronous Determine Speed Task
 1

 11 9 ID maintain_speed
 11 Get New Current State
 9

 20 5 DI maintenance_interval
 19 Lookup Maintenance Schedule
 7

 20 4 DI maintenance_message
 19 Lookup Maintenance Schedule
 9 11 13

 19 1 ID maintenance_reset_command
 19 Lookup Maintenance Schedule
 1 2

 20 2 DI maintenance_type
 19 Lookup Maintenance Schedule
 2 3 5 6 7 9 11 13

 19 5 ID major_service
 19 Lookup Maintenance Schedule
 5

 8 3 ID measure_signal
 8 Measure Mile
 3 6 10 13

 19 6 ID miles_since_maintenance
 19 Lookup Maintenance Schedule
 6 7

 19 5 ID oil_filter
 19 Lookup Maintenance Schedule
 5

 14 3 ID pedal_deflection
 14 Pedal Override
 3

 8 5 ID pulse_counter
 8 Measure Mile
 5 8 11

Appendix D: Sample PDL/81 Design 93

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 23.004
21 Jan 92 INDEX TO DATA ITEMS

INDEX TO DATA ITEMS (continued)

PAGE LINE TYPE NAME AND REFERENCES
---- ---- ---- -------------------

 6 2 ID pulse_counts_per_mile
 7 Determine Speed Task
 5
 6 Initialize Asynchronous Determine Speed Task
 2
 8 Measure Mile
 11

 11 5 ID resume_speed
 11 Get New Current State
 5

 7 1 ID shaft_rotation
 7 Determine Speed Task
 1
 8 Measure Mile
 7

 12 3 ID throttle_position
 13 Increase Speed
 3
 12 Maintain Speed
 3 7
 14 Pedal Override
 3

 17 3 ID trip_clock
 17 Compute Trip Average
 3 5

 17 2 ID trip_mileage
 17 Compute Trip Average
 2 5

 5 3 ID within_mile
 5 Main Program Task
 3
 8 Measure Mile
 2 3 4 6 10 12 14

94 PDL/81 Design Language Reference Guide

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 24
21 Jan 92

 * *
 * INDEX TO FLOW SEGMENTS *
 * *

Appendix D: Sample PDL/81 Design 95

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 24.001
21 Jan 92 INDEX TO FLOW SEGMENTS

INDEX TO FLOW SEGMENTS

PAGE LINE TYPE CX NAME AND REFERENCES
---- ---- ---- -- -------------------

 18 FS 1 Compute Miles Per Gallon
 16 Monitor Automobile
 3

 17 FS 2 Compute Trip Average
 16 Monitor Automobile
 1

 10 FS 7 Control Speed
 5 Main Program Task
 6

 7 FS 2 Determine Speed Task
 6 Initialize Asynchronous Determine Speed Task
 3

 21 FS 0 Display Number
 18 Compute Miles Per Gallon
 2
 17 Compute Trip Average
 5

 11 FS 3 Get New Current State
 10 Control Speed
 2

 13 FS 0 Increase Speed
 10 Control Speed
 17

 6 FS 0 Initialize Asynchronous Determine Speed Task
 5 Main Program Task
 1

 19 FS 4 Lookup Maintenance Schedule
 16 Monitor Automobile
 2

 5 FS 1 Main Program Task

 12 FS 1 Maintain Speed
 10 Control Speed
 12

 8 FS 6 Measure Mile
 5 Main Program Task
 7

 16 FS 0 Monitor Automobile

96 PDL/81 Design Language Reference Guide

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 24.002
21 Jan 92 INDEX TO FLOW SEGMENTS

INDEX TO FLOW SEGMENTS (continued)

PAGE LINE TYPE CX NAME AND REFERENCES
---- ---- ---- -- -------------------

 5 Main Program Task
 5

 14 FS 1 Pedal Override
 10 Control Speed
 7

Appendix D: Sample PDL/81 Design 97

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 25
21 Jan 92

 * *
 * INDEX TO OVERLY COMPLEX SEGMENTS *
 * *

98 PDL/81 Design Language Reference Guide

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 25.001
21 Jan 92 INDEX TO OVERLY COMPLEX SEGMENTS

INDEX TO OVERLY COMPLEX SEGMENTS

PAGE TYPE CX SEGMENT NAME
---- ---- -- ------------

(MAXIMUM ALLOWABLE COMPLEXITY = 6)

 10 FS 7 Control Speed

Appendix D: Sample PDL/81 Design 99

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 26
21 Jan 92

 * *
 * INDEX TO REQUIREMENTS REFERENCES *
 * *

100 PDL/81 Design Language Reference Guide

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 26.001
21 Jan 92 INDEX TO REQUIREMENTS REFERENCES

INDEX TO REQUIREMENTS REFERENCES

REQUIREMENT PAGE SEGMENT NAME
----------- ---- ------------

1 18 Compute Miles Per Gallon
 7 Determine Speed Task
 6 Initialize Asynchronous Determine Speed Task
 5 Main Program Task
 16 Monitor Automobile
1.1 21 Display Number
2 17 Compute Trip Average
 7 Determine Speed Task
 6 Initialize Asynchronous Determine Speed Task
 5 Main Program Task
 16 Monitor Automobile
2.1 21 Display Number
3 7 Determine Speed Task
 6 Initialize Asynchronous Determine Speed Task
 19 Lookup Maintenance Schedule
 5 Main Program Task
 20 Maintenance Data
 16 Monitor Automobile
4 10 Control Speed
 7 Determine Speed Task
 6 Initialize Asynchronous Determine Speed Task
 5 Main Program Task
4.1 13 Increase Speed
 12 Maintain Speed
4.3 11 Get New Current State
4.4 11 Get New Current State
4.4.1 14 Pedal Override
4.5 11 Get New Current State
5 7 Determine Speed Task
 6 Initialize Asynchronous Determine Speed Task
 5 Main Program Task
 8 Measure Mile

Appendix D: Sample PDL/81 Design 101

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 27
21 Jan 92

 * *
 * CALLS-IN-CONTEXT LIST *
 * *

102 PDL/81 Design Language Reference Guide

CFG, INC. AN AUTOMOBILE CRUISE CONTROL EXAMPLE PAGE 27.001
21 Jan 92 CALLS-IN-CONTEXT LIST

CALLS-IN-CONTEXT LIST

F PAGE NAME / CALL
- ---- -----------

 18 Compute Miles Per Gallon
 16 compute miles per gallon

 17 Compute Trip Average
 16 compute trip average

 10 Control Speed
 5 control speed

 7 Determine Speed Task
 6 spawn determine speed task

 21 Display Number (number)
 17 display number ((trip_mileage - current_mileage) / (trip_clock -
 clock_time))
 18 display number ((last_fuel - current_mileage) / fuel_added)

 11 Get New Current State
 10 get new current state

 13 Increase Speed
 10 increase speed

 6 Initialize Asynchronous Determine Speed Task
 5 initialize asynchronous determine speed task

 19 Lookup Maintenance Schedule
 16 lookup maintenance schedule

 5 Main Program Task

 12 Maintain Speed
 10 maintain speed

 8 Measure Mile
 5 measure mile

 16 Monitor Automobile
 5 monitor automobile

 14 Pedal Override
 10 elseif pedal override

Appendix D: Sample PDL/81 Design 103

 * *
 * END OF DESIGN DOCUMENT *
 * *

STATISTICS

Maximum complexity measure (CX) is 7.
1 flow segment had a complexity greater than 6.

14 flow segments.

2047 lines in definition file(s).
302 lines in source file(s).

618 dictionary entries allocated.
2204 string segments allocated; 2083 in use.

65024 bytes of dynamic memory allocated.

104 PDL/81 Design Language Reference Guide

D.2 Source Listing

The input lines which resulted in the design document of the preceding section
are:

%title An Automobile Cruise Control Example
%sindex
%dindex
%rindex
%stree
%complexity
%cic
%kwv
#{kw;spawn}
%g Requirements
%t Statement of Problem
Design a combined automobile cruise control and trip computer
with the following characteristics:

1. Display Fuel Consumption Rate

 1.1 Each time fuel is added, the driver enters the
 amount added and the system computes and
 displays the consumption.

2. Display Average Speed

 2.1 Each time the driver requests an average speed,
 the system displays the average speed since the
 "trip start".

 2.2 The driver may set "trip start".

3. Display Maintenance Messages

 3.1 Oil and oil filter change every 5000 miles.

 3.2 Air filter change every 10000 miles.

 3.3 Major service every 15000 miles.

 3.4 Display intermittent message 250 miles before
 service required.

 3.5 Display continuous message 50 miles before
 service required.

 3.6 The driver informs the system when service
 is completed.

4. Control Cruising Speed

 4.1 The system can control the throttle to maintain
 cruising speed. For simplicity, it is assumed
 that the brakes will never be needed for speed
 control.

 4.2 The cruising speed is the speed the car is
 traveling when the cruise control is activated.

 4.3 Activation and Deactivation

 4.3.1 To activate the cruise control, the
 engine must be running and the car must
 be traveling 30 miles per hour or

Appendix D: Sample PDL/81 Design 105

 faster.

 4.3.2 The cruise control can be deactivated
 at any time.

 4.3.3 The cruise control is always deacti-
 vated when the engine is turned off.

 4.4 Suspension and Resumption

 4.4.1 Operation of the cruise control is
 temporarily suspended whenever the
 driver uses the accelerator or brake.

 4.4.2 If the cruise control is suspended but
 has not been deactivated, the driver
 can tell the system to resume operation
 and it will return the car to the
 cruising speed.

 4.5 The driver can increase cruising speed by
 telling the system to increase speed and then
 telling it to stop increasing.

5. Calibration

 5.1 The system must maintain accurate mileage.
 This is done by periodic calibration.

 5.2 To calibrate the system, the car is driven over
 a measured mile and the driver informs the
 system at the beginning and the end.

 5.3 The cruise control must be off during
 calibration.
%g Cruise Control and Monitoring
%s Main Program Task
%req 1;2;3;4;5

 initialize asynchronous determine speed task
 set current_state to inactive
 set within_mile to off
 do forever
 monitor automobile
 control speed
 measure mile
 enddo

%s Initialize Asynchronous Determine Speed Task
%req 1;2;3;4;5

 set last_time to clock_time
 set pulse_counts_per_mile to a default value
 spawn determine speed task

%s Determine Speed Task
%req 1;2;3;4;5

 do for each shaft_rotation
 set current time to clock_time
 set time per rotation to (current time - last_time)
 set last_time to current time
 set distance per rotation to (1/pulse_counts_per_mile)
 set current_speed to (distance per rotation/time per rotation)
 add distance per rotation to cummulative_distance

106 PDL/81 Design Language Reference Guide

 if cummulative_distance is greater than one mile
 increment current_mileage
 subtract one mile from cummulative_distance
 endif
 enddo

%s Measure Mile
%req 5

 if current_state is not inactive or engine_running is false
 set within_mile to ignore
 elseif within_mile is off and measure_signal is on
 set within_mile to on
 reset pulse_counter
 elseif within_mile is on and measure_signal is on
 if there has been a shaft_rotation
 increment pulse_counter
 endif
 elseif within_mile is on and measure_signal is off
 set pulse_counts_per_mile to pulse_counter
 set within_mile to off
 elseif measure_signal is off
 set within_mile to off
 endif

%g Control Speed
%s Control Speed
%req 4

 if there is a driver_request
 get new current state
 endif
 if current_state is inactive or engine_running is false
 set desired_speed to zero
 set current_state to inactive
 elseif pedal override
 set current_state to suspended
 elseif brake_engaged is true
 set current_state to suspended
 elseif current_state is cruising
 maintain speed
 elseif current_state is accelerating
 if current_speed is close to or above desired_speed
 set current_state to cruising
 else
 increase speed
 endif
 endif

%s Get New Current State
%req 4.3;4.4;4.5

 do case of driver_request
 increase_speed:
 set desired_speed to infinity
 set current_state to accelerating
 resume_speed:
 if desired_speed is not zero or infinity
 set current_state to accelerating
 endif
 maintain_speed:
 if current_speed is above 30 mph
 set desired_speed to current_speed

Appendix D: Sample PDL/81 Design 107

 set current_state to cruising
 else
 set current_state to inactive
 endif
 inactivate_cruise:
 set current_state to inactive
 enddo

%s Maintain Speed
%req 4.1

 if current_speed is much above desired_speed
 ..deceleration is needed
 set throttle_position to closed
 else
 set correction to current_speed - desired_speed
 ..normal throttle position is a function of speed
 set throttle_position the normal position plus
 some function of correction
 endif

%s Increase Speed
%req 4.1

 ..normal throttle position is a function of speed
 ..acceleration is also a function of speed
 set throttle_position to normal position plus acceleration

%s Pedal Override
%req 4.4.1

 ..pedal_deflection is an input
 ..throttle_position is an output
 if pedal_deflection is greater than throttle_position
 ..the driver is accelerating
 return true
 else
 return false
 endif

%g Monitor Automobile
%s Monitor Automobile
%req 1;2;3

 compute trip average
 lookup maintenance schedule
 compute miles per gallon

%s Compute Trip Average
%req 2

 if activate_trip_average
 set trip_mileage to current_mileage
 set trip_clock to clock_time
 elseif get_trip_average
 display number ((trip_mileage - /
 current_mileage) / (trip_clock - clock_time))
 endif

108 PDL/81 Design Language Reference Guide

%s Compute Miles Per Gallon
%req 1

 if fuel_added
 display number ((last_fuel - current_mileage) / fuel_added)
 set last_fuel to current_mileage
 endif

%s Lookup Maintenance Schedule
%req 3

 if there is a maintenance_reset_command
 determine maintenance_type from maintenance_reset_command
 set last_reset for maintenance_type to current_mileage
 endif
 do for each maintenance_type ..oil_filter, air_filter, major_service
 set miles_since_maintenance to (current_mileage /
 - last_reset for maintenance_type)
 set difference to (maintenance_interval for maintenance_type /
 - miles_since_maintenance)
 if difference is greater than 250
 set maintenance_message of maintenance_type to off
 elseif difference is greater than 50
 set maintenance_message of maintenance_type to /
 intermittent
 else
 set maintenance_message of maintenance_type to on
 endif
 enddo

%d Maintenance Data
%req 3

maintenance_type is oil_filter, air_filter, major_service
..the following items are arrays of maintenance_type
maintenance_message
maintenance_interval is 3000, 10000, 15000
last_reset

%s Display Number (number)
%req 1.1;2.1

 write the number in decimal to the display

Index

% as command character 8
%BL command 15
%CDATA command 24
%CIC command 45
%CODE command 46
%CODEFILE command 46
%COMPLEXITY command 43
%CSTRING command 9
%D command 21
%DATA command 21
%DATACHAR command 20
%DATE command 40
%DCHAR command 20
%DINDEX command 48
%DSCHAR command 19
%E command 33
%EJECT command 18
%EXTERNAL command 33
%FILL command 16
%G command 11
%GROUP command 11
%HEADING command 18
%INCLUDE command 8
%KWFONT command 27
%KWV command 45
%KWVC command 45
%LCASE command 26
%LE command 15, 16
%LNO command 42
%MAJORHEADING command 18
%MC command 42
%NEED command 17
%NL command 15
%NOCDATA command 24
%NOCIC command 45
%NOCOMPLEXITY command 44
%NODINDEX command 48
%NOFILL command 16

%NOKWV command 45
%NOLCASE command 26
%NOLNO command 42
%NORINDEX command 44
%NOSBOX command 41
%NOSDMODE command 22
%NOTREE command 47
%NOUSCORE command 27
%PROJECT command 40
%PTITLE command 39
%R command 44
%REQ command 44
%RINDEX command 44
%S command 23
%SBOX command 41
%SCASE command 26
%SDMODE command 21
%SECSTYLE command 41
%SECURITY command 40
%SEGMENT command 23
%SINDEX command 48
%SPACE command 17
%STREE command 47
%SUBHEADING command 18
%T command 13
%TAG command 37
%TEXT command 13
%TEXTF command 14
%TF command 14
%TITLE command 39
%TREE command 47
%UCASE command 26
%USCORE command 27
%VERB command 15
%VL command 15

(as initial comment string 9

- 109 -

110 PDL/81 Design Language Reference Guide

* as comment command character 8

. as initial comment string 9

/ as continue character 7

2167 (DOD-STD) requirements track-
ing 44

: as label character 25

#{ special sequence 7

\ as escape character 7
* as bullet character 7

_ as initial data character 20

Abbreviated trees 47
Ada comment convention 10
Adding new keywords 25, 59
Advanced features 43
Alphabetic list of commands 55
Alternate source files 8
Argument counting 45
ASCII control codes 7
Automatic requirements tracking 44

Banners, security 40
BF text function 36
BFU text function 36
BFUC text function 36
BL command 15
Blank lines 13
Blank lines in flow segments 23
Blank, unpaddable 8
Blanks in flow segments 23
Body of design 6, 9
Body of flow segment 23
Boxes, segment 9
Boxes, special 41
Breaking a line 14
Bullet character 7, 14
Bullet lists 15

Calls-in-context index 6
Calls-in-context list 45, 49
CASE secondary keyword 30
CDATA command 24
Change bars 42
Characters, special 7
CIC command 45
Classes and codes for keywords 60
Code and design in the same file 46
CODE command 46

Code segments 46
CODEFILE command 46
Codes and classes for keywords 60
Command argument 8
Command character 8
Command lines 8
Command name 8
Commands for complexity measure-

ment 43
Commands, alphabetic list 55
Commands, general formatting 17
Commands, heading 18
Commands, listing control 39
Commands, segment 9
Commands, vertical spacing 17
Comment command 8
Comment strings 9
Complex segment index 6
Complexity analysis 43
COMPLEXITY command 43
Complexity index 48
Complexity measurement commands

43
Consistency checking 45, 49
Continuation of input lines 7
Continue character 7
CSTRING command 9
CYCLE keyword 30
CYCLE statement 30
Cyclomatic complexity 43

D command 21
Data character 20
DATA command 21
Data index 6
Data item declaration 19
Data item declaration, explicit 21
Data item declaration, implicit 20
Data item index 48
Data item special characters 19
Data items 19
Data segments 6, 21
DATACHAR command 20
DATE command 40
Date of listing 40
DATE text function 35
DCHAR command 20
Declaration mode, normal 21
Declaration mode, special 21
Declaration of data items 19
Delimiting segments 9
Design and code in the same file 46
Design body 6, 9
Design date 40
Design document style 3

Index 111

Design format 5
Design table of contents 5
Design title 39
Design title page 5
DINDEX command 48
Display of segments 9
DO CASE construct 30
DO construct 28
DO FOR construct 30
DO FOREVER construct 30
DO keyword 28
DO UNTIL construct 29
DO WHILE construct 28
Document styles 2
DOD-STD 2167, requirements track-

ing 44
DSCHAR command 19

E command 33
EJECT command 18
ELSE keyword 27
ELSEIF keyword 27
Empty segments 9
ENDDO keyword 28
ENDIF keyword 27
ENDO keyword 28
Enhancement of flow figures 45
Enhancement of keywords 26
Error messages 51
Error messages, non-terminal 51
Error messages, terminal 52
Escape character 7
Expansion of tabs 7
Explicit data item declaration 21
EXTERNAL command 33
External segments 6, 33

Fatal error messages 52
FILL command 16
Final page of design 6
Flow figure enhancement 45
Flow segment body 23
Flow segment index 6, 48
Flow segment references 24
Flow segment statements 23
Flow segments 6, 23
Flow segments, special statements

25
FOR secondary keyword 30
FOREVER secondary keyword 30
Format of a design 5
Format of input 7
Formatted text segments 14
Formatting mode, initial 16
Formatting, general commands 17

Front matter 5
Functions, text 35

G command 11
General formatting commands 17
General information 5
GetCode number register 46
GROUP command 11
Groups 11

HEADING command 18
Heading commands 18

IF construct 27
IF keyword 27
IF secondary keyword 29, 30, 31
Implicit data item declaration 20
INCLUDE command 8
Including alternate source 8
Index of requirements 49
Index to data items 48
Index to flow segments 48
Index to requirements 44
Index, calls-in-context 6
Index, data 6
Index, flow segment 6
Index, overly complex segments 6
Index, requirements 6
Information, general 5
Initial formatting mode 16
Input format 7
Input line continuation 7
Input tab stops 7
Introduction 1
Invocation of PDL/81 7

Keyword classes and codes 60
Keyword definition placement 62
Keyword enhancement 26
Keywords 25
Keywords, adding 25, 59
KW text function 59, 60
KWFONT command 27
KWV command 45
KWVC command 45

Labels in flow segments 24
LCASE command 26
LE command 15, 16
Library of styles 2
Line breaks 14
Line numbers 42
Listing control commands 39
Listing date 40
Lists 14

112 PDL/81 Design Language Reference Guide

Lists, bullet 15
Lists, numbered 15
Lists, verb 15
LNO command 42

MAJORHEADING command 18
MC command 42
McCabe, Thomas J. 43
Messages, error 51
Mode, normal declaration 21
Mode, special declaration 21

NEED command 17
NL command 15
NOCDATA command 24
NOCIC command 45
NOCOMPLEXITY command 44
NODINDEX command 48
NOFILL command 16
NOKWV command 45
NOLCASE command 26
NOLNO command 42
Non-terminal error messages 51
NORINDEX command 44
Normal declaration mode 21
NOSBOX command 41
NOSDMODE command 22
NOTREE command 47
NOUSCORE 27
Null segments 9
Numbered lists 15

Operation, overall 7
Other publications 2
Overall operation 7
Overly complex segments 48

Page head definition 39
PDL/74 1
Placement of keyword definitions 62
Primary keywords 25
Printers, serial 41
Processor reports 47
PROJECT command 40
PTITLE command 39
Publications, related 2

R command 44
Recursive references 47
REF text function 37
Reference recognition 24
Reference tree report 6
References and tags 36
References to flow segments 24
Related publications 2

Report, reference tree 6
Reports 6, 47
REQ command 44
Requirements index 6, 44, 49
Requirements tracking 44
RETURN keyword 31
RETURN statement 31
RINDEX command 44
Root segment 47
Running page head definition 39

S command 23
Sample design 63
SBOX command 41
SCASE command 26
SDMODE command 21
Secondary keywords 25, 60
SECSTYLE command 41
Security banners 40
Security banners, format 41
SECURITY command 40
Segment boxes 9
SEGMENT command 23
Segment commands 9
Segment delimiting 9
Segment display 9
Segment index 48
Segment reference trees 47
Segments, data 6, 21
Segments, external 6, 33
Segments, flow 6, 23
Segments, text 6, 13
Serial printers 41
Sheet numbers 40
Short boxes 41
Short trees 47
ShowCode number register 46
SINDEX command 48
SPACE command 17
Space, unpaddable 8
Special boxes 41
Special characters 7
Special characters in data items 19
Special declaration mode 21
Special statements in flow segments

25
Special trees 47
Standard error file 51
Statements in flow segments 23
Statistics 6
STREE command 47
Strings, comment 9
Style library 2
Style of design 2
SUBHEADING command 18

Index 113

T command 13
Tab expansion 7
Tab stops, input 7
Table of contents 5
TAG command 37
Tags and references 36
Terminal error messages 52
TEXT command 13
Text functions 35
Text references 36
Text segments 6, 13
Text segments, formatted 14
Text segments, unformatted 13
TEXTF command 14
TF command 14
TITLE command 39
Title of the design 39
Title page 5
Tracking, requirements 44
TREE command 47
Trees 6
Trees, segment reference 47

UC text function 36
UCASE command 26
Underscoring keywords 27
Underscoring of text 36
UNDO keyword 29
UNDO statement 29
Unformatted text segments 13
Unpaddable space 8
UNTIL secondary keyword 29
US text function 36
USCORE command 27

VERB command 15
Verb lists 15
Vertical spacing commands 17
VL command 15

WHILE secondary keyword 28
White space 13
White space in commands 8

	Introduction
	General Information
	Groups
	Text Segments
	General Formatting Commands
	Data Item Declaration
	Flow Segments
	External Segments
	Text Functions
	Listing Control Commands
	Advanced Features
	Processor Reports
	Appendices
	Error Messages
	List of Commands
	Adding New Keywords
	Sample PDL/81 Design

	Index

