Part Three

80/RL R & L Tools
Reference Guide

Table of Contents

Chapter 1 Introduction

............................ 1
1.1 The 80/RLTools« . i o it i e e e e e e i e 1
1.2 Invokingthe BO/RL Tools « v v v v v v v s e e v 2
1.2.1 Invocation Considerations for UNIX and PC-DOS 2

1.2.1.1 ArgumentFiles 2

1.2.1.2 Redirecting the Standard Error File 2

1.2.2 Invocation Considerations for VAXYWMS 2
Chapter 2 Using 80/LINK: UNIXand PC-DOS 3
2.1 Simple Linking o . e e e e 4
2.2 QOutput Module Characteristics 4
2.3 Using Libraries e e 4
2,4 Resolving an External Reference toa Fixed Address 5
2.5 COMMON Block Names and Normal Publies 5
2.6 Segment Sizes L L L L0 e e e e e e e e e e 5
2.7 Segment Alignment L0000 d e e e 6
28 ImvisibleGaps o e 8
Chapter3 Using 80/LINK: VMS 9
3.0.1 Imveocatiomn Options v 00 9

3.1 SimpleLinking 000 s s 10
3.2 Output Module Characteristics 10
3.3 Using Libraries o .« o v v v v v v e e e e e 10
3.4 Resolving an External Reference to a Fixed Address 11
3.5 COMMON Block Names and Normal Publies 11
3.6 Segment Sizes L e e e e e e e 12
3.7 Segment Alignment L L Lo s e 12
3.8 Invisible Gaps e e 12
Chapter 4 Using 80/LOC: UNIXand PC-DOS« . v« . 15
4.1 Simple Address Binding o0 0oL 16
4.2 SwitchModifiers 0. 17
4.3 Segment Placemento 17
4.4 Segment Order i e e e e e e e e e e e 18
4.5 Segment Length Management, . .. 18
4.6 Alignment of the Next Available Location 19
4.7 SegmentMaps 0L e e e 19
4.8 Data Record Concatenation v v v v v 20

Chapter 5 Using 80/LOC: VMS oo 21

3-ii 80/RL R & L Tools Guide

5.0.1 ImvocationOptions 00 21

5.1 Simple Address Binding oL 0oL 22
5.2 Qualifier Medifiers L . 0o Lo 23
5.3 Segment Placemento 23
5.4 SegmentOrdert i e e e e e e e e e e 24
5.5 Segment Length Management,.. 24
5.6 Alignment of the Next Available Location 25
5.7 SegmentMaps L L L L e e s e e e e e e e 25
5.8 Data Record Concatenation 26
Chapter6 Using 80/THEX v .. 27
6.1 Considerations o i L i e e e e 29
Chapter 7 Using 80/MAP: UNIXandPC-DOS 31
7.1 Simple Map Generationo 32
7.2 MapFormats v 0 o e e e e e e e e 32
7.3 Sorted Map Generation e e e 33
7.4 Modifying the ContentsofaMap 34
Chapter 8 Using 80/MAP: VMS 35
8.1 SimpleMap Generation o000 e e 37
8.2 MapFormats 0 . e e e e e e e e 37
8.3 Sorted Map Generation00 e e 38
8.4 Modifying the ContentsofaMap 38
Chapter 9 Using 80/STRIP ¢ v v v v v e e i a0 39
9.1 Simple Object File Stripping« 39
9.2 Restricted Object File Stripping 39
Chapter 10 Using 80/HEX o« v i vt v v v o 41
10.1 Absolute Hex Object File Production 41
10.2 Restrictions L L L L e e e e e e e 41
10.3 OutputFileFormat.o, 41
10,4 Usewith VMS« o v 0 e e e 42
Chapter 11 Using 80/CROBJand 80/DSOBT 43
11.1 Creation Source Format « . . .00 00 43
11.1.1 Creation SourceElements 43
11.1.1.1 Whitespace 00 e e e e e 43
11.21.2Numberso 43

11.1.1.3Names . 0 0 L s e e e e e e e e e e e e 44

11.1.2 Creation Source Records 44
11.2 ObjectFileCreation« . v v v v v v e 44
11.3 ObjectFileDisplay oo e 45
11.4 Special VMS Considerations00 46
Chapter 12 UsingtheLibraryTools 47
12.1 Simple Library Creation« o o 000w 47
12.2 Many-Member Library Creation 47
12,3 Simple Library Listing o000 438
12.4 ListingFormats & v o 0 o e e e e e e e e e e 48
Chapter 13 Using the Tools Together, 49

131 Overlays 0 L L e e e e e e e e e e e e e e e e 49

Table of Contents 3-iii

13.1.1 Makinga SimpleOverlay 49
13.1.2 Making an Overlay Which References MEMORY Indirectly 50
13.1.3 Making an Overlay Which References MEMORY Directly 50
13.2 Removing Specific Public Definitions 50
Chapter 14 Common Topics« v v v v v v v o v 51
141 Functions L o e e e e e 51
14.1.1 The Functions of 80/LINK 51
14.1.2 The Functions of 80/LOC and 80/THEX 51
14.1.3 The Functions of 80/MAP 52
14.1.4 The Functionsof 80/STRIP 52
14.2 DefaultInputsand OQutputs 52
143 Definitions L. Lo Lo 53
Chapter 15 Examples: UNIX and PC-DOS 55
15,1 SimpleDefaultLink Lo 0oL oL 55
15.2 SimpleRedirected Linko o0 Lo, 55
15.3 Default Link Using Bound Publics 55
15.4 Libraries with Multiply-Defined Publics 55
15.5 Specifying Alignment L0000 56
15.6 Adjusting the SizeofaSegment 00 56
15.7 Sorted and compacted boundoutput L L0 57
15.8 Sorted and compacted bound output, Tektronix format 57
15.9 SymbolicMapExamples00 o 57
15.10 Default Strip oo oL 58
15,11 Restricted Strip o oo 58
15.12 Many-Member Library Creation 58
15.13 LibraryListing o000 oo 59
15.14 SimpleOverlay« . L oo 59
15.15 Overlay Referencing MEMORY Indirectly 60
15.16 Overlay Referencing MEMORY Directly 60
15.17 Overlaying Two Segments o v v v v v v o 60
15.18 Removing “private” Publics 0 61
Chapter 16 Examples: VMS o0 63
16.1 SimpleDefaultLink o e e 63
16.2 SimpleRedirectedLink .,o 63
16.3 Default Link Using Bound Publics 63
16.4 Libraries with Multiply-Defined Publics 63
16.5 Alignment L. L o e e e e e e e e 64
16.6 Adjusting the SizeofaSegmento oL 64
16.7 Sorted and compacted bound output oL o000 L 65
16.8 SymbolicMapExamples, 65
16.9 Default Strip L L e e e 66
16.10 Restricted Stripo Lo o 66
16.11 Many-Member Library Creation 66
16,12 Library Listing o oo o000 s e o 67
16.13 SimpleQOverlay Lo e e e e e 67
16.14 Overlay Referencing MEMORY Indirectly 68
16.15 Overlay Referencing MEMORY Directly 68
16.16 Overlaying Two Segments« o v v v v oo 68
Index

1. Introduction

This portion of the Experts-PL/M™ manual describes the use of the 80/RL™ Relocation
and Linkage Tools. These are a collection of utilities that may be used to combine
and manipulate object files to produce absolute object modules suitable for loading and
running on an Intel 8080/8085 or a Zilog Z80 system. Although examples are given, the
manual is not intended as a tutorial — it assumes at least some familiarity with linkers.

Several chapters describe the independent use of the R & L toals; another describes

some of the concerted uses of the tools; still others contain examples and other miscel-
laneous information.

1.1 THE 80/RL TQOLS
The 80/RL tools are:

80/LINK™

80/LOC™
80/THEX™

B8O/MAP™
80/STRIP™

80/HEX™
80/DSOBJ™
80/CROBJ™

80/LIBCR™
80/LIBLS™

Combines multiple object modules and libraries into a single relocatable
object module.

Converts a single relocatable object module into an absolute object module.

Converts a single relocatable object module into an absolute object module
in either Tektronix LAS format or extended Tekhex format.

Produces an address map of one or more object modules.

Deletes public and debugging dictionary information from one or more
object modules.

Converts an object module from Intel MCS-80/85 Relocatable Object Module
Format to absolute hexadecimal form.

Converts an object module from Intel MCS-80/85 Relocatable Object Module
Format to a convenient, human-readable form.

Converts the display form of an object module, as produced by 80/DSOB],
to Intel MCS-80/85 Relacatable Object Module Format.

Creates a library of object modules in a form to be searched by 80/LINK.
Provides a listing of information about a library created by 80/LIBCR.

These tools operate under the VAX/VMS™, UNIX™, and PC-DOS operating systems.

3-2 80/RL R & L Tools Guide

1.2 INVOKING THE 80/RL TOOLS

Under the UNIX and PC-DOS operating systems, all tools are invoked in a uniform
manner using UNIX conventions. Under VAX/VMS, some tools are invoked using VMS
conventions and some are invoked using UNIX conventions.

1.2.1 Invocation Considerations for UNIX and PC-DOS

The method for invoking each of the 80/RL tools is described in the chapter devoted to
that tool. However, certain invocation features under UNIX and PC-DOS are common to
all of the tools and are described in this section.

1.2.1.1 Argument Files
Any command line argument may have the form
@argfile
where argfile is a file containing more arguments. This is particularly useful in cases
where more arguments are required than will fit on the original command line.

1.2.1.2 Redirecting the Standard Error File

Error messages are written on the standard error file, which is usually the display screen.
This may be changed by using a command line (or argument file] argument of the form

Nerrfile

where errfile is the name of the file to receive error messages. If the argument has the
form

AMerrfile

the messages will be appended to the file.

1.2.2 Invocation Considerations for VAX/'VMS

The 80/LINK, 80/LOC, and B0/MAP tools are invoked using VMS-style conventions. The
others use the UNIX style. When using the UNIX style under VMS, be sure to enclose
argument strings in double-quote marks (") if they contain any uppercase characters that
should remain as uppercase.

2. Using 80/LINK: UNIX and PC-DOS

The 80/LINK linking tool is invoked using UNIX conventions under UNIX and PC-DOS
and using VMS conventions under VMS. This chapter describes the use of 80/LINK under
UNIX and PC-DOS. See Chapter 3 for a discussion of its use under VMS.

Under UNIX and PC-DOS, 80/LINK is invoked as

80link [-v] [-0o [output]] [-p] file [[-p] file]

which combines a list of 8080 object files and generates a single object file from them.
Every module header record turns into a module ancestor record. Any library named as
an input file is searched for modules which satisfy outstanding external references; such
modules are incorporated into the output file.

If at least one main module is present in the modules combined, then the resulting
module is also a main module — its starting address and name are the same as that of the
first main module encountered. If a main module is not present, the resulting module is

a subroutine module ~ it has no starting address, and its name is that of the first module
encountered.

The following switches are recognized:

-p The next object file is scanned only for absolute public definitions. Such publics
are used to resolve external references, but are not written to the output file.

-0 The next argument is used as the output file name (rather than c.out, the default).
The output file name may be so specified only once.

-v Each unresolved external is named (the default action is to report only that
unresolved externals are present).

-Xtaaa Specifies, as aaa, the prefix to be used on all temporary file names, instead of
the default ““tmp\” under PC-DOS or “fusr/tmp/" under UNIX. As an example,

“.Xt./” will cause temporary files to be created in the current directory (i.e., the
one in use when 80link is invoked).

3-4 80/RL R & L Tools Guide

2.1 SIMPLE LINKING

At its simplest, the linker produces a file containing a single linked object module from
a number of simple input object files:

80link objl.q obj2.q ... objn.q

leaves the linked output module of the n object files in c.out. Each of the input files must
be either a legal object file, or an 80/DS library. The linked output can be left in any
desired file by using the -o switch followed by the name of the desired output file (two
separate arguments to the linker). The linked output cannot be sent to standard output.

2.2 OUTPUT MODULE CHARACTERISTICS

If none of the linker’s input object files contains a main program module, then the
resulting module is not a main program, and its module name is the same as that of
the first module in the first input object file. If at least one of the input object modules is
a main program module, then the resulting module is a main program, its starting address
is the starting address of the first main program encountered, and its module name is
the module name of the first main program encountered (if more than one of the input
object modules is a main program, an error message is also generated).

2.3 USING LIBRARIES

When the linker encounters an 80/DS$ library, it does the following for each member of
the library in turn:

It compares the publics of the member against the outstanding externals.

If a match is found, the current member is immediately linked in: its publics
resolve any outstanding externals, and any of its externals which are not currently
satisfied are immediately added to the outstanding external pool.

If, when the linker reaches the end of the library, at least one member has been linked

in on the current pass through the library, it repeats the process from the first member
of the library.

Library search is actually performed on a library dictionary, not on the individual
library members, so that library search is relatively fast.

If no public within a library appears in more than one member, then the order of
members within the library is immaterial, even if library members reference publics in
other members of the same library. The extraction of members from a library containing
multiply-defined publics is described in Section 15.4.

The linker cannot extract a specific member from a library. Therefore, a library
member with no publics can never be used, and is, therefore, wasted.

The linker views each COMMON block as a public. Therefore, a library member
which references a COMMON com will be extracted from the library if an external
com currently exists, and will resolve that external. Only one library member can
be extracted in this fashion for any given COMMON block name. The linker has no
way of differentiating between library members which reference COMMON blacks (like
subroutines) and those which define COMMON blocks (like BLOCK DATA subprograms).

Chapter 2: Using 80/LINK: UNIX and PC-DOS 3-5

2.4 RESOLVING AN EXTERNAL REFERENCE TO A FIXED ADDRESS

The linker's -p switch followed by a file name ({two separate arguments to the linker)
causes bound publics from the file to be used in resolving any outstanding external
references (such a file is called a “publics-only” file]. This can be used to resolve external
references between two programs which cannot be physically linked together into a single
module, such as a program run as a root and a separately-loaded overlay. Using a root
and overlay as an example, it is then unnecessary either to know the physical addresses
of things in the root when writing the code for the overlay, or to generate a set of abject
files, each of which has nothing but a single public declaration at an absolute address.

A library may not be used as a publics-only file.
If the linker is invoked by

80link oa.q ob.q -p root x.1lib -0 overlay
the following should be noted:
1. No data records from the publics-only file (root) are incorporated into the output
(overlay).

2, No public symbol definitions from the publics-only file (root) appear in the cutput
(overlay). If unref is a public in root referenced in both ob.q and xb.qg,

80link xa.q xb.q -p overlay x.1lib

will cause an “unresolved externals” warning message; overlay’s knowledge of
unref is entirely private.

3. Only bound (absolute) publics from the publics-only file (root) are used; the -p
switch causes relocatable publics in the file so specified to be ignored.

4. If a bound public in the publics-only file (root) and a relocatable public in a
normal input file (0a.q or ob.q) have the same name, the public from the publics-
only file is ignored; no “duplicate public” error is provoked.

A more complete example appears in Section 13.1.1.

25 COMMON BLOCK NAMES AND NORMAL PUBLICS

The linker assumes that a named COMMON block resolves references to an external of
the same name. Thus, no public symbol may have the same name as a named COMMON
block. Any program may reference COMMON blocks by declaring them to be external
structures. The definition of a COMMON block as an external structure does not affect
the size of the COMMON block.

2.6 SEGMENT SIZES
Each segment has a size strictly less than 64K {65536) associated with it. When the linker
combines partial segments from two input files, the length is determined as follows:

segment combined segment size

code, data Modified summing: the size of the resulting segment is at least the sum
of the sizes of the same segments in the input files (see Section 2.8 for an
explanation).

3-6 80/BL R & L Tools Guide

stack Summing; the size of the resulting segment is the sum of the sizes of the
same segments in the input files.

memory Overlay: the size of the resulting segment is the maximum of the sizes of
the same segments in the input files.

unnamed COMMON, named COMMON

Overlay: the size of the resulting segment is the maximum of the sizes of
the same segments in the input files.

If the sum of the sizes of the partial code, data, or stack segments is greater than (64K

- 1}, the linker issues an error message and sets the size of the resulting segment to (64K
-1).

The linker does not propagate a segment of zero length which has no inter- or intra-
segment references to it.

2.7 SEGMENT ALIGNMENT

Each segment has an alignment which tells the binder the next suitable address for the
segment: the next available byte (byte alignment); the next available byte whose address
is a multiple of 256 (page alignment); or the next available byte which will ensure that
the segment will not span a multiple of 256 (inpage alignment).

The linker determines the alignment of the combined segment produced from two
partial segments. For the code and data segments, the combination of two partial
segments is byte-aligned if both are byte-aligned; inpage-aligned if both are inpage-aligned
and the sum of their lengths is no more than 256 bytes; and page-aligned otherwise. A
gap may be generated if the second partial segment (the “new” segment being combined
with an “existing” segment) is not byte-aligned (see Section 2.8). For all other relocatable

segments, the combination of two partial segments is byte-aligned if both are byte-aligned,
and page-aligned otherwise.

2.8 INVISIBLE GAPS

The linker can generate unreported {invisible) gaps in the code and data segments. This
causes the length of the combined segment to be greater than the sum of sizes of the

partial segments. Although the description is given for the data segment, it is equally
valid for the code segment.

Let two data segments be datal and data2, of length (a = 256*b + ¢) and (x = 256*y

t z), respectively. The table indicates the intersegment gap produced for all possible
alignments of datal and data2:

data1, data2 result

byte, byte No gap is produced.

page, byte No gap is produced.

inpage, byte No gap is produced.

byte, page No gap is produced if ¢ = 0; otherwise, the gap is (256 - c) bytes long.
page, page No gap is produced if ¢ = 0; otherwise, the gap is (256 - ¢) bytes long.

inpage, page No gap is produced if ¢ = 0; otherwise, the gap is (256 - ¢) bytes long.

Chapter 2: Using 80/LINK: UNIX and PC-DOS 3.7

byte, inpage No gap is produced if x = {256 - ¢); otherwise, the gap is (256 - ¢)
bytes long.

page, inpage No gap is produced if x =< (256 - ¢); otherwise, the gap is (256 - c)
bytes long.

inpage, inpage No gap is produced if x = (256 - ¢) {the resulting segment is inpage-
aligned); otherwise, the gap is {256 - ¢) bytes long (the resulting seg-
ment is page-aligned).

3. Using 80/LINK: VMS

The 80/LINK linking tool is invoked using UNIX conventions under UNIX and PC-DOS
and using VMS conventions under VMS. This chapter describes the use of 80/LINK under
VMS. See Chapter 2 for a discussion of its use under UNIX and PC-DOS.

Under VMS, 80/LINK is invoked by:

BOLINK [options] file-spec[,file-spec...]

Qualifiers: Defaults:
/ARGS="options"

/ [NO}QUTPUT[=file-spec] /OUTPUT

JPUBLICS_ONLY

/ [NC] VERBOSE /VERBOSE

By default, BOLINK will process the specified files (with default file type of “Q80") and
place the resulting linked object module in a file with the same name as the first input
file and a file type of “L80".

3.0.1 Invocation Options

IARGS="0ptions”

Allows the use of UNIX-style options. Note that the option list should be
enclosed in double-quote marks (") to preserve the case of the options.

/OUTPUT[=file-spec]
/NOOUTPUT

Controls whether the linker produces an output object module. By default,
the linker produces an object module that has the same file name as the first
input file and a file type of “L80".

/PUBLICS_ONLY

Identifies files to be scanned only for absolute public definitions. These files
are used only to resolve external references. They are not written to the
output file. This qualifier is specified only on particular files, not on the
command. Its effect is only for that file.

3-10 80/BRL R & L Tools Guide

VERBOSE
/NOVERBOSE

Indicates that the linker should identify all unresolved externals. The default
is f/VERBOSE.

3.1 SIMPLE LINKING

At its simplest, the linker produces a file containing a single linked object module from
a number of simple input object files:

801link obji,o0bj2,...,0bjn

links obj1.q80, 0hj2.q80,... and leaves the linked output module of the n object files in
obj1.180. Each of the input files must be either a legal object file, or an 80/DS library.
The linked output can be left in any desired file by using the /OUTPUT qualifier as in

80link/output=mtest al,a2
which links 01.q80 and a2.q80 and leaves the result in mtest.180.

3.2 OUTPUT MODULE CHARACTERISTICS

If none of the linker’s input object files contains a main program module, then the
resulting module is not a main program, and its module name is the same as that of
the first module in the first input object file. If at least one of the input object modules is
a main program module, then the resulting module is a main program, its starting address
is the starting address of the first main program encountered, and its module name is
the module name of the first main program encountered (if more than one of the input
object modules is a main program, an error message is also generated).

3.3 USING LIBRARIES

When the linker encounters an 80/DS library, it does the following for each member of
the library in turn:

® It compares the publics of the member against the outstanding externals.

¢ If a match is found, the current member is immediately linked in: its publics
resolve any outstanding externals, and any of its externals which are not currently
satisfied are immediately added to the outstanding external poaol.

If, when the linker reaches the end of the library, at least one member has been linked
in on the current pass through the library, it repeats the process from the first member
of the library.

Library search is actually performed on a library dictionary, not on the individual
library members, so that library search is relatively fast.

If no public within a library appears in more than one member, then the order of
members within the library is immaterial, even if library members reference publics in
other members of the same library. The extraction of members from a library containing
multiply-defined publics is described in Section 15.4.

The linker cannot extract a specific member from a library. Therefore, a library
member with no publics can never be used, and is, therefore, wasted.

The linker views each COMMON block as a public. Therefore, a library member
which references a COMMON com will be extracted from the library if an external

Chapter 3: Using 80/LINK: VMS 3-11

com cutrrently exists, and will resolve that external. Only one library member can
be extracted in this fashion for any given COMMON block name. The linker has no
way of differentiating between library members which reference COMMON blocks (like
subroutines) and those which define COMMON blocks (like BLOCK DATA subprograms).

3.4 RESOLVING AN EXTERNAL REFERENCE TO A FIXED ADDRESS

The linker’s /PUBLICS_ONLY qualifier following an input file name causes bound publics
from the file to be used in resolving any outstanding external references (such a file is
called a “publics-only” file). This can be used to resoclve external references between
two programs which cannot be physically linked together into a single module, such as
a program run as a root and a separately-loaded overlay. Using a root and overlay as an
example, it is then unnecessary either to know the physical addresses of things in the
root when writing the code for the overlay, or to generate a set of object files, each of
which has nothing but a single public declaration at an absolute address.

A library may not be used as a publics-only file.
" If the linker is invoked by

80link/output=overlay oa, ob,root/publics,x.1lib
the following should be noted:

1. No data records from the publics-only file (root) are incorporated into the output
{overlay).

2. No public symbol definitions from the publics-only file (root) appear in the output
(overlay). If unref is a public in root referenced in both ob.q80 and xb.q80,

80link xa, xb, overlay.180/publics,x.lib

will cause an “unresolved externals” warning message; overlay’s knowledge of
unref is entirely private.

3. Only bound {absolute) publics from the publics-only file (root) are used; the
/PUBLICS_ONLY qualifier causes relocatable publics in the file so specified to be
ignored.

4. If a bound public in the publics-only file (root) and a relocatable public in a
normal input file (0ca.q80 or ob.q80) have the same name, the public from the
publics-only file is ignored; no “duplicate public” error is provoked.

A more complete example appears in Section 13.1.1.

3.5 COMMON BLOCK NAMES AND NORMAL PUBLICS

The linker assumes that a named COMMON block resolves references to an external of
the same name. Thus, no public symbol may have the same name as a named COMMON
block. Any program may reference COMMON blocks by declaring them to be external
structures. The definition of a COMMON block as an external structure does not aifect
the size of the COMMON block.

3-12 80/RL R & L Tools Guide

3.6 SEGMENT SIZES

Each segment has a size strictly less than 64K (65536) associated with it. When the linker
combines partial segments from two input files, the length is determined as follows:

segment combined segment size

code, data Modified summing: the size of the resulting segment is at least the sum
of the sizes of the same segments in the input {iles {see Section 3.8 for an
explanation).

stack Summing: the size of the resulting segment is the sum of the sizes of the
same segments in the input files.

memory Overlay: the size of the resulting segment is the maximum of the sizes of
the same segments in the input files.

unnamed COMMON, named COMMON

Overlay: the size of the resulting segment is the maximum of the sizes of
the same segments in the input files.

1f the sum of the sizes of the partial code, data, or siack segments is greater than (64K
- 1], the linker issues an error message and sets the size of the resulting segment to (64K
- 1).

The linker does not propagate a segment of zero length which has no inter- or intra-
segment references to it.

3.7 SEGMENT ALIGNMENT

Each segment has an alignment which tells the binder the next suitable address for the
segment: the next available byte (byte alignment); the next available byte whose address
is a multiple of 256 (page alignment); or the next available byte which will ensure that
the segment will not span a multiple of 256 (inpage alignment).

The linker determines the alignment of the combined segment produced from two
partial segments. For the code and data segments, the combination of two partial
segments is byte-aligned if both are byte-aligned; inpage-aligned if both are inpage-aligned
and the sum of their lengths is no more than 256 bytes; and page-aligned otherwise. A
gap may be generated if the second partial segment (the “new” segment being combined
with an “existing” segment) is not byte-aligned {see Section 3.8). For all other relocatable
segments, the combination of two partial segments is byte-aligned if both are byte-aligned,
and page-aligned otherwise.

3.8 INVISIBLE GAPS

The linker can generate unreported (invisible) gaps in the code and data segments. This
causes the length of the combined segment to be greater than the sum of sizes of the
partial segments. Although the description is given for the data segment, it is equally
valid for the code segment.

Let two data segments be datal and data2, of length (@ = 256*b + c) and (x = 256*y

+ z), respectively. The table indicates the intersegment gap produced for all possible
alignments of datal and data2:

datal, data2
byte, byte
page, byte
inpage, byte
byte, page
page, page
inpage, page
byte, inpage

page, inpage

inpage, inpage

Chapter 3: Using 80/LINK: VMS 3-13

result

No gap is produced.

No gap is produced.

No gap is produced.

No gap is produced if ¢ = 0; otherwise, the gap is (256 - ¢) bytes long.
No gap is produced if ¢ = 0; otherwise, the gap is (256 - ¢) bytes long.
No gap is produced if ¢ = 0; otherwise, the gap is (256 - ¢) bytes long.

No gap is produced if x = (256 - c); otherwise, the gap is {258 - ¢}
bytes long.

No gap is produced if x =< (256 - c); otherwise, the gap is (256 - ¢)
bytes long.

No gap is produced if x = {256 - ¢) (the resulting segment is inpage-
aligned); otherwise, the gap is (256 - c) bytes long (the resulting seg-
ment is page-aligned).

4. Using 80/LOC: UNIX and PC-DOS

The 80/LOC binder tool is invoked using UNIX conventions under UNIX and PC-DOS
and using VMS conventions under VMS. This chapter describes the use of 80/LOC under
UNIX and PC-DOS. See Chapter 5 for a discussion of its use under VMS.

Under UNIX and PC-DOS, 80/LOC is invoked as

80loc [-aaln] [-c) [-lloe] [-m map] [-o file]
[-sseg] [file]

which assigns physical addresses to logical addresses in an 8080 object module. The

files “c.out” and “d.out” in the current directory are used as the default input and output
files, respectively. At most one input file may be processed.

The default segment order is

CODE

STACK

any named COMMON blocks, in an unspecified order
unnamed (blank) COMMON

DATA

MEMORY

L N

The next available address is initially 0.

The following switches are recognized; all numbers are entered in 80/PL notation
((number}[BOQDH]).

-sseg The indicated segment is assigned the next available address {possibly ad-
justed for the segment’s intrinsic alignment}. All segments mentioned in -
s switches are assigned addresses before segments not so mentioned are as-
signed addresses. Common block names must be enclosed in virgules (//),
so that unnamed common has the segment name #, and a common block
named XYZ has the segment name /XYZ/. The pseudo-segment names COM-
MONS and ALLOTHER correspond to all common blocks and all segments

not otherwise mentioned, respectively, in the default order mentioned pre-
viously.

3-16 80/RL R & L Tools Guide

-sseg=1th, -sseg+lth, or -sseg-lth

-aaln

-lloc

The indicated segment is assigned the next available address. Additionally,
its length is modified. The first form causes the segment’s length to be simply
set to Ith; the other forms cause the segment length given in the input file

to be incremented (+) or decremented [-) by lth (but never before 0 or past
OFFFFH).

If aln is greater than 1, and the next available address is not divisible by aln,
the next available address is advanced to the next multiple of aln.

The next available address will be loc.

-Iseg, -lseg+loc, or -1seg-loc

~In

-0

-Bstring

-Xtaoaa

The next available address will be the address of the indicated segment
(which must have already appeared in the argument list, either explicitly
or implicitly), optionally incremented or decremented by loc. The pseudo-
segment MAX may be used to retrieve the high-water mark of all currently-
allocated memory.

A memory map is requested. If the next argument is -, then the map is sent
to standard output; otherwise, the next argument is used as the name of the
map file.

If this switch is the last argument, no bound output is produced. Otherwise,
the next argument is used as the name of the output file (rather than d.out).

The data records are compacted — that is, they are sorted by address, with
adjacent records potentially collapsed into one. This requires another pass
through the input file. The default is random (uncompacted) data records.

Prepend string to the name of each 80/LOC phase before executing it, thus
allowing alternate versions of 80/LOC to be executed.

Specifies, as aaa, the prefix to be used on all temporary file names, instead of
the default “\tmp\" under PC-DOS or “/usr/tmp/” under UNIX. As an example,
“.Xt./” will cause temporary files to be created in the current directory (i.e.,
the one in use when 80PC is invoked).

4,1 SIMPLE ADDRESS BINDING

At its simplest, the binder binds a single object module to physical (absolute} addresses.
The command

801oc

binds the object module in c.out to physical addresses, and leaves the bound object
module in d.out.

The input file may be set to any desired file by giving a file name:

80loc obj.lnk

binds the file obj.Ink rather than c.out. The bound output can be left in any desired file
with the -0 switch:

80loce -0 run

Chapter 4: Using 80/LOC: UNIX and PC-DOS 3-17

binds c.out and leaves the result in run rather than d.out.

80loc -o

binds c.out but does not save the result anywhere. The bound output cannot be sent to
standard output.

4.2 SWITCH MODIFIERS

The actual switches and the legal forms for their modifiers are described elsewhere; the
following general comments apply to the binder’s switch modifiers:

1. Switch modifiers are case-insensitive. However, symbalic modifiers will be given

in lower case and literal modifiers will be given in upper case in the following
sections.

2. Numbers in switch modifiers are entered in 80/PL notation, and are always
collected mod 65536.

3. Whenever a segment is referenced in a switch modifier, the segment’s name (not
its numeric id) is required.

4. The pseudo-segments MAX, COMMONS and ALLOTHER may be used in place

of normal segments in some situations. These are described with the appropriate
switches,

5. The name of a COMMON block must be enclosed in virgules {/). Unnamed
COMMON has the segment name //, the COMMON block named plotx has the
segment name /plotx/, and the COMMON block named data has the segment name
/dataf; /data/ is not the data segment (data is).

4.3 SEGMENT PLACEMENT

By default, segments are assigned physical addresses beginning at 0, in nonoverlapping
but adjacent memory (subject to segment alignment constraints — see Section 2.7).

_ The binder’s -1 switch modifies the next address available for a segment. Its uses are
described in the table below; n is a number entered in 80/PL notation.

modifier result
n The next available address is set to n mod 65536.
segment The next available address is set to the address of segment. If the segment

is not the pseudo-segment MAX, it must have already appeared in the
list of switches (forward references are disallowed); the address of MAX
is considered to be higher than all currently-allocated addresses. MAX
is useful when different segments have been physically overlaid, or when
previous segments have been placed at absolute addresses in random order
and an arbitrary (but nonconflicting) address is desired. MAX may appear

any number of times; its value may be different each time that it appears,
in a nondecreasing sequence.

segment+n The next available address is set to the maximum of 65535 and (the address

of segment + n). The segment must have already appeared in the list of
switches, or else be MAX.

3-18 80/RL R & L Tools Guide

segment-n The next available address is set to the minimum of 0 and (the address

of segment - n). The segment must have already appeared in the list of
switches, or else be MAX.

4.4 SEGMENT ORDER
By default, the binder binds segments to physical addresses in the order

CODE

STACK

named COMMON blocks, in an unspecified order
unnamed (blank) COMMON

DATA

MEMORY

@ oo @ N

The binder’s -s switch modifies this order; it has the form -ssegment. All segments
mentioned in -s switches are assigned addresses before unmentioned segments are as-
signed addresses; unmentioned segments are assigned addresses in the default order.
The next available address may be moditfied (by the -1 switch) between two -s switches;
the switches are processed in left-to-right order.

The pseudo-segment COMMONS causes all named COMMON blocks which are not
mentioned in any other -s switch to be assigned addresses; unnamed (blank) COMMON
is not affected. All -s switches — not just the preceding switches — are scanned for
COMMON block names if -sCOMMONS appears. Named COMMON blocks selected in
this way are assigned addresses in an unspecified order.

The pseudo-segment ALLOTHER causes all segments which are not mentioned in
any other -s switch to be assigned addresses, in their default order. All -5 switches — not
just the preceding switches — are scanned for segment and pseudo-segment names if -

sALLOTHER appears.
4.5 SEGMENT LENGTH MANAGEMENT

Every relocatable segment has a length associated with it in the module header. This
length is managed by the linker when object modules are combined (see Section 2.6).
The binder’s -s switch can further modify the length of a segment, as described in the
table below; n is a number entered in 80/FL notation.

modifier result
segment=n The length of segment is set to exactly n.

segment+n The length of segment is set to the maximum of 65535 and (the length of
segment in the input {ile + n).

segment-n The length of segment is set to the minimum of 0 and (the length of segment
in the input file - n).

If a segment appears in more than one -s switch, its first appearance defines its position,
and its last explicitly-given length (if any) defines its length,

Chapter 4: Using 80/LOC: UNIX and PC-DOS 3-19

4.6 ALIGNMENT OF THE NEXT AVAILABLE LOCATION

Every relocatable segment has an alignment associated with it (see Section 2.7). The -

a switch causes the binder to perform some alignment of the next available address; it
takes a numeric modifier n,

If the medifier of the -a switch is 0 or 1, the next available address is left unchanged.
Otherwise, if the next available address is not already a multiple of n, it is advanced to
the next larger muitiple of n. This alignment does not averride the alignment of the next
segment as given in the module header: it is impossible to assign a page-aligned segment

an address which is an arbitrary multiple of 7, for instance [Section 15.5 has examples
of the -a switch).

4,7 SEGMENT MAPS

The binder can produce a map of every segment and every previously-bound data record
which it encounters, the execution start address of the module, any embedded address
gaps, and any segment or previously-bound data record overlaps. The -m switch requests
that such a map be produced; the next argument indicates the file to which the map is
to be sent. The map is sent to standard output if - is used as the map file name.

A sample map might look like

00040H 00245H CODE

00285H OGOO07TBH *GAP

00300H 000BOH //

00300H 0048CH DATA

00300H 00080H *OVERLAP
0078CH 00038H STACK

007C4H OFQ3CH *GAP

OF800H 00800H ABSOLUTE
0004FH START ADDRESS

The first column gives the beginning address of the item, in 80/PL hexadecimal notation.
The second column gives the length of the item, in 80/PL hexadecimal notation {the start
address has no length). The third column gives the name of the item:

ABSOLUTE a previously-bound data record

*GAP a gap between the preceding and following items; no data records
appear for these addresses

*QVERLAP the previous two items overlapped in the indicated region

START ADDRESS the execution start address of the module; this line is only present
if the input cbject module is a main program

segment a program segment or COMMON block

Except for the execution start address (which is always the last line, if present), the lines
are in order of the items’ beginning addresses.

3-20 80/RL R & L Tools Guide

4.8 DATA RECORD CONCATENATION

By default, the binder does not coalesce data records in the input object module: there
are exactly as many data records in the bound output as there are in the (unbound) input.
The -c switch causes two data records which do not refer to externals and which refer
to adjacent addresses to be coalesced into a single data record. This causes a (slight)
decrease in the size of the bound output, and may (favorably) affect the time it takes for
other programs to process the bound cutput.

5. Using 80/LOC: VMS

The 80/LOC linking tool is invoked using UNIX conventions under UNIX and PC-DOS
and using VMS conventions under VMS. This chapter describes the use of 80/LOC under
VMS. See Chapter 4 for a discussion of its use under UNIX and PC-DOS.

Under VMS, 80/LOC is invoked by:

80LOC [options] file-spec

Qualifiers: Defaults:
/ARGS="options"

/ [NO] COMPACT /NOCOMPACT
/INOIMAP[=file-spec] /NOMAP
/MEMORY= (options)

/ [NOJOUTPUT [=file-spec] JOUTPUT

By default, 80LOC will process the specified file (with default file type of “L80") and

place the resulting absolute object module in a file with the same name and a file type
of “B80".

5.0.1 Invocation Options

ARGS="options”

Allows the use of UNIX-style options. Note that the option list should be
enclosed in double-quote marks (") to preserve the case of the options.

{COMPACT
NOCOMPACT

Controls whether 80/LOC compacts the output data records. With /COMPACT
specified, the data records are sorted by address, collapsing adjacent data
records into one. This requires an extra pass through the input file. The
default is NOCOMPACT.

/MAP[=file-spec]
/INOMAP

Controls whether a memory map is produced. If requested, the name defaults
to that of the input file with a file type of “BMP”. The default is /NOMAP.

3-22 80/RL R & L Tools Guide

/MEMORY =[options)

Controls the memory layout of the absolute output module. The next avail-
able address is initially 0. The default segment order is: CODE, STACK,
named COMMON, unnamed COMMON, DATA, and MEMORY.

The following options may be used to override the defaults. All numbers are
entered in 80/PL notation ({(number}[BOQDH]). A plus sign (+) may be used
where “#” is indicated, but it must be quoted because of DCL requirements.
The keywords may be abbreviated as long as they are distinguishable.

SEGMENT:name or name=n or name#n or name-n

The indicated segment is asigned the next available address, adjusted
for the segment’s intrinsic alignment. All segments so mentioned are
assigned addresses before all other segments. Common block names
should be formed as: |name| and |}{. The pseudo segment names
COMMONS and ALLOTHERS are also available.

Optionally, the segment’s length may be modified. It may be set to n
{=), incremented by n (+ or #), or decremented by n {-).

ALIGNMENT:n

The next available address is [if it is not already) aligned to a multiple
of nn.

LOCATION:n
The next available address is set to n.
LOCATION:name or name#n or name-n

The next available address will be that of the named segment (which
must have already been mentioned), optionally incremented (+ or #)

or decremented (-) by n. The pseudo-segment MAX is the high water
mark of currently allocated memory. '

/{OUTPUT|[={ile-spec]
NOQUTPUT

Controls whether 80/LOC produces an output absolute module. By default,
80/LOC produces an absolute module that has the same file name as the input
file and a file type of “B80”.

5.1 SIMPLE ADDRESS BINDING

At its simplest, the binder binds a single object module to physical (absolute) addresses.
The command

80loc test

binds the object module in test.180 to physical addresses and leaves the bound result in’
test.h8o.

The bound output can be left in any desired file with the /OUTPUT qualifier
80loc/output=run test
binds test.]180 and leaves the result in run.b80 rather than test.b8o0.

Chapter 5: Using 80/LOC: VMS 3-23

5.2 QUALIFIER MODIFIERS

The actual qualifiers and the legal forms for their modifiers are described elsewhere; the
following general comments apply to the binder's switch modifiers:

1. Qualifier modifiers are case-insensitive. However, symbolic modifiers will be

given in lower case and literal modifiers will be given in upper case in the
following sections,

Numbers are entered in 80/PL notation, and are always collected mod 65536.

Whenever a segment is referenced in a switch modifier, the segment’s name (not
its numeric id) is required.

4. The pseudo-segments MAX, COMMONS and ALLOTHER may be used in place
of normal segments in some situations. These are described with the appropriate
switches.

5. The name of a COMMON block must be enclosed in vertical bars (11). Unnamed

: COMMON has the segment name |}, the COMMON block named plotx has the

segment name |plotx], and the COMMON block named data has the segment
name |datal; |datal is not the data segment {data is).

5.3 SEGMENT PLACEMENT

By default, segments are assigned physical addresses beginning at 0, in nonoverlapping
but adjacent memory (subject to segment alignment constraints — see Section 3.7).

The binder’'s LOCATION keyword to the /MEMORY qualifier modifies the next ad-

dress available for a segment. Its uses are described in the table below; n is a number
entered in 80/PL notation.

maodifier result
n The next available address is set to n mod 65536.
segment The next available address is set to the address of segment. If the segment

is not the pseudo-segment MAX, it must have already appeared in the
list of switches (forward references are disallowed); the address of MAX
is considered to be higher than all currently-allocated addresses. MAX
is useful when different segments have been physically overlaid, or when
previous segments have been placed at absolute addresses in random order
and an arbitrary (but nonconflicting) address is desired. MAX may appear
any number of times; its value may be different each time that it appears,
in a nondecreasing sequence.

segment#n The next available address is set to the maximum of 65535 and (the address

of segment + n). The segment must have already appeared in the list of
switches, or else be MAX.

segment-n The next available address is set to the minimum of 0 and (the address

of segment - n). The segment must have already appeared in the list of
switches, or else be MAX.

3.24 B80/RL R & L Tools Guide

5.4 SEGMENT ORDER
By default, the binder binds segments to physical addresses in the order

CODE

STACK

named COMMON blocks, in an unspecified order
unnamed (blank) COMMON

DATA

MEMORY

U S ol

The hinder’'s SEGMENT keyword to the /MEMORY qualifier modifies this order; it has
the form SEGMENT:name. All segments specified by in SEGMENT keywords are as-
signed addresses before unmentioned segments are assigned addresses; unmentioned
segments are assigned addresses in the default order. The next available address may be
modified {by the LOCATION keyword) between two SEGMENT keywords; the keywords
are processed in left-to-right order.

The pseudo-segment COMMONS causes all named COMMON blocks which are not
specified in any other SEGMENT option to be assigned addresses; unnamed (blank)
COMMON is not affected. All SEGMENT keywords — not just the preceding switches
— are scanned for COMMON block names if SEGMENT:.COMMONS appears. Named
COMMON blocks selected in this way are assigned addresses in an unspecified order.

The pseudo-segment ALLOTHER causes all segments which are not specified in any
other SEGMENT keyword to be assigned addresses, in their default order. All SEGMENT
keywords — not just the preceding ones — are scanned for segment and pseudo-segment
names if SEGMENT:ALLOTHER appears.

5.5 SEGMENT LENGTH MANAGEMENT

Every relocatable segment has a length associated with it in the module header. This
length is managed by the linker when object modules are combined (see Section 3.6). The
binder’s SEGMENT keyword to the MEMORY qualifier can further modify the length of
a segment, as described in the table below; n is a number entered in 80/PL notation.

modifier result
segment=n The length of segment is set to exactly n.

segment#n The length of segment is set to the maximum of 65535 and (the length of
segment in the input file + n).

segment-n The length of segment is set to the minimum of ¢ and (the length of segment
in the input file - n).

If a segment appears in more than one SEGMENT keyword, its first appearance defines
its position, and its last explicitly-given length (if any) defines its length.

Chapter 5: Using 80/LOC: VMS 3-25

5.6 ALIGNMENT OF THE NEXT AVAILABLE LOCATION

Every relocatable segment has an alignment associated with it (see Section 3.7). The
ALIGNMENT keyword causes the binder to perform some alignment of the next available
address; it takes a numeric modifier n.

If the modifier of the keyword is 0 or 1, the next available address is left unchanged.
Otherwise, if the next available address is not already a multiple of n, it is advanced to
the next larger multiple of n. This alignment does not override the alignment of the next
segment as given in the module headenr: it is impossible to assign a page-aligned segment

an address which is an arbitrary multiple of 7, for instance (Section 16.5 has examples
of the ALIGNMENT keyword).

5.7 SEGMENT MAPS

The binder can produce a map of every segment and every previously-bound data record
which it encounters, the execution start address of the module, any embedded address
gaps, and any segment or previously-bound data record overlaps. The MAP qualifier
requests that such a map be produced and optionally provides a file into which the map
is to be written. If a file name is not given, the map wil be written to the a file with the
same name as the input file with a file type of “BMP”,

A sample map might look like

00040H 00243H CODE

00285H 0007TBH *GAP

00300H 00080H //

00300H 0048CH DATA

00300H 00080H *OVERLAP
00T8CH 00038H STACK

007C4H OFO03CH *GAP

OF800H 00800H ABSOLUTE
0004FH START ADDRESS

The first column gives the beginning address of the item, in 80/PL hexadecimal notation.
The second column gives the length of the item, in 80/PL hexadecimal notation (the start
address has no length). The third column gives the name of the item:

ABSOLUTE a previously-bound data record

*GAP a gap between the preceding and following items; no data records
appear for these addresses

*OVERLAP the previous two items overlapped in the indicated region

START ADDRESS the execution start address of the module; this line is only present
if the input object module is a main program

segment a program segment or COMMON block

Except for the execution start address (which is always the last line, if present), the lines
are in order of the items’ beginning addresses.

3-26 B80/RL R & L Tools Guide

5.8 DATA RECORD CONCATENATION

By default, the binder does not coalesce data records in the input object module: there
are exactly as many data records in the bound output as there are in the (unbound) input.
The /COMPACT qualifier causes two data records which do not refer to externals and
which refer to adjacent addresses to be coalesced into a single data record. This causes
a (slight) decrease in the size of the bound output, and may (favorably) affect the time it
takes for other programs to process the bound output.

6. Using 80/THEX

Some versions of 80/DS support a utility known as 80/THEX, It is invoked by

80thex [-aaln] [-lloc] [-m map] [-o file] [-sseg]
[-tterm} [-wwidth] [-fformat] [-xchip] {file]

under UNIX and PC-DOS. Under VMS, the invocation is the same except that the com-
mand name is “THEX80". 80/THEX assigns physical addresses to logical addresses in an
object module and produces an absolute object module in either Tektronix LAS format
or extended Tekhex format. The files c.out and e.out in the current directory are used as
the default input and output files, respectively. At most one input file will be processed.

The default segment order is

CODE

STACK

any named COMMON blocks, in an unspecified order
unnamed (blank} COMMON

DATA

MEMORY

N N

The next available address is initially 0.

Names longer than 16 characters are converted to a 16-character form by retaining
the first 6 and the last 10 characters of the name {true for either output format).

The following apply if the output object is extended Tekhex. The segment
A$modulename is created to hold symbols which are already absolute (which belong
to no segment); this segment always has zero length and begins at address 0.

The following apply if the output object is LAS format. The segment A$modulename
will contain all symbols and text found before the first ancestor record. The segment
A.oldmodule will contain all symbols and text found after the ancestor record for the
modile cldmodule. These segments always have length 64K and begin at address 0.
Note that the prefixes are different for the module and the ancestor cases.

The following switches are recognized; all numbers are entered in 80/PL notation
({(number)[BOQDH]).

3-28 BO/RL R & L Tools Guide

-sseg

The indicated segment is assigned the next available address (possibly
adjusted for the segment’s intrinsic alignment). All segments mentioned in
-s switches are assigned addresses before segments not so mentioned are
assigned addresses. Common block names must be enclosed in virgules
(0, so that unnamed common has the segment name /#, and a common
block named XYZ has the segment name /XYZ/. The pseudo-segment
names COMMONS and ALLOTHER correspond to all common blocks and
all segments not otherwise mentioned, respectively, in the default order
mentioned previously.

-sseg=1th, -sseg+lth, or -sseg-lth

-aaln

dloc

The indicated segment is assigned the next available address. Additionally,
its length is modified. The first form causes the segment’s length to be
simply set to Ith; the other forms cause the segment length given in the
input file to be incremented {+) or decremented (-) by Ith (but never before
0 or past OFFFFH).

If aln is greater than 1, and the next available address is not divisible by
aln, the next available address is advanced to the next multiple of aln.

The next available address will be loc.

-1seg, -1seg+loc, or -Iseg-loc

-1

-0

-tterminator

-wwidth

-fformat

-xchip

The next available address will be the address of the indicated segment
{which must have already appeared in the argument list, either explicitly
or implicitly), optionally incremented or decremented by Joc. The pseudo-

segment MAX may be used to retrieve the high-water mark of all currently-
allocated memory.

A memory map is requested. If the next argument is -, then the map is
sent to standard output; otherwise, the next argument is used as the name
of the map file.

If this switch is the last argument, no bound output is produced. Otherwise,
the next argument is used as the name of the output file (rather than e.out).

Change the Tekhex end-of-line sequence from \n (the default) to terminator;
terminator may not be null. Standard C language escape sequences are
supported. For example ‘1’ means ‘carriage return’, \n' means ‘new line’
and 013’ means ‘the character with octal value 13",

Change the maximum number of characters in extended Tekhex records
from 256 (the default) to width. Extended Tekhex records are only used

for symbol table information. The width may not be set smaller than 60
nor larger than 2586.

Change the output file format to LAS format (if format is L), or extended
Tekhex (if format is T). LAS format is the default.

Change the target processor information to 8080/8085 (if chip is 8080 or
8085), or Z80 (if chip is Z80 or 280). 8080/8085 is the default. This switch
has an cbservable effect only when LAS format output has been selected.

Chapter 6: Using 80/THEX 3-29

6.1 CONSIDERATIONS

80/THEX functions similarly to 80/LOC. Each reads an input object module in the Intel
MCS-80/85 Relocatable Object Module format and assigns physical addresses to the logi-
cal addresses of its input. Controls common to the two processors function identically.
Note that the 80/LOC “compact” control is absent from 80/THEX (but see Section 15.8),

and the 80/THEX “terminator”, “width”, “format” and “chip” controls are absent from
80/LOC.

The primary difference between the two processors is the output object module
format. 80/LOC produces an output object module in the Intel MCS-80/85 Relocatable
Object Module format, which can be further processed by 80/DS tools. 80/THEX produces
an cutput object module in either the Tektronix LAS format or the Tektronix extended
Tekhex format, neither of which can be further processed by 80/DS tools.

7. Using 80/MAP: UNIX and PC-DOS

The 80/MAP map generator is invoked using UNIX conventions under UNIX and PC-
DOS and using VMS conventions under VMS. This chapter describes the use of 80/MAP
under UNIX and PC-DOS. See Chapter 8 for a discussion of its use under VMS.

The map generator produces a single symbolic map (symbol table) for a collection
of arbitrary object files. It can produce such a map in a format suitable for machine
searching [“grep” format}, or in a format more suited to casual perusal (“simple” format).
The map may reflect the order of the symbolic information in the object file, or may be
sorted by name or address.

80/MAP is invoked by

80map [-aatoms] [-ftype] [-s[sort]]
[-ttab] [name]

If no object files are named, the standard input is mapped. The map is written to standard
output.

The default map has the format
address file module type item
An optional, simpler format has lines with the format
address type item

By default, the entries in each line are separated by tab characters.

The most significant byte of any address is the segment of that address. Thus, ab-
solute addresses look like 00XXXX; relocatable addresses in the CODE segment look like
01XXXX; and similarly for the other segments. All addresses are given in hexadecimal.

By default, all external, local symbol, public symbol and line number information
goes into the map.

The following switches are recognized:
-ftype Specify a map format. If type is “g", generate the default (“grep”) format
map; if type is “s", generate the simpler format map.

-stype Sort the map. The map is sorted by name, sorted by address, or unsorted
("sorted” by order of appearance), as type is “n”, “a”, or “u”. The defaultis

3-32 80/RL R & L Tools Guide

an unsorted map. The sorting method may not be changed from sorted to
unsorted (or conversely) after an input file has been encountered. If more
than one sorting method is given, the last one encountered takes effect (“-sa
file1 -sn file2* produces a map sorted by name). When sorting by name, all
items with no address (ancestors, externals, files and modules] collate low
to all symbols (public and local), which collate low to all line numbers.

-aatoms Specify the atoms (types of items) in the map. The possible atoms are

module ancestor records (simple format only)

external symbols

file names (simple format only)

line numbers

module name records (simple format only)

public symbols

mt-ug'—‘"ﬁmm

local symbols
all of the above (the world)
- the following atoms are deleted from the map

£

+ the following atoms are added to the map

The default is +w- (everything goes into the map; subsequent atom types
are deleted from the map).

-ttab Change the tab character to “tab”.

7.1 SIMPLE MAP GENERATION
The simplest map generation produces the symbolic map of a single object file:
80map obj.q

sends the default-format symbolic map of obj.q to standard output. More than cne object
file name may be given, resulting in a single “super-map”. If no object file name is given,
the symbolic map of standard input is generated.

7.2 MAP FORMATS

By default, the map generator produces a machine-searchable map; this format can also

be specifically requested by the -f switch with the modifier g. Lines in such a map have
the format

address file module type item

A simple map is produced by the -f switch with the modifier s. Lines in such a map
have the format

address type item

The same information is present for either format, although a simple format map will
have more lines than its corresponding default format map. The map format may not be
changed after an object file has been processed.

Chapter 7: Using 80/MAP: UNIX and PC-DOS 3-33

The entries in each line in either format are separated by tab characters. The tab

character is initially the ASCII tab; it can be changed to the first character of the modifier
of a -t switch.

The address portion of a line gives the address of the item as a six-digit hexadecimal
number. The first two digits of an address give a numeric segment id; the remaining four
digits give an offset within that segment. Thus, an absolute item has an address in the
range 000000 to 00ffff; a code segment relocatable item, in the range 010000 to 01{ff;
and similarly for the other segments. External names, file names, module names and
ancestor names never have addresses associated with them.

The file and module are the names of the file and module in which the item reside.
The type’s and the map format in which they may appear are

type description
extern external symbgl name (g, s)
line line number (g, s)

public public symbol name (g, s)

symbol local symbol name (g, s)

ancest the ancestor module for the subsequent items (s)
file the file containing the subsequent items (s)
module the module containing the subsequent items (s)

The item’s are either names or line numbers.

7.3 SORTED MAP GENERATION

The -s switch causes the symbolic map to be sorted as described in the table:

modifier sorting method

a sort the map by address; type’s without an address collate low to type’s with
an address; line numbers collate high to symbols

n sort the map by name (item)

u produce an unsorted map (order of appearance in the input file)

The map may not be changed from sorted to unsorted, or unsorted to sorted, after an
object file has been processed; otherwise, the last sorting method encountered takes effect
for the entire map.

3-34 80/BL R & L Tools Guide

7.4 MODIFYING THE CONTENTS OF A MAP

The various types of items (atoms) which are actually selected for the map can be
specified by the modifiers to the -a switch, as given in the table:

modifier atom selected

a module ancestor names (ignored in default-format maps)

e external names

f file names (ignored in default-format maps)

1 line numbers

m module names (ignored in default-format maps)

P public symbol names

] local symbol names

w all of the set a, e, f, 1, m, p, s (the world)

- subsequent atoms in -a switch modifiers are deleted from the map
+ subsequent atoms in -a switch modifiers are added to the map

The default setting is +w-: everything is sent to the map; alphabetic modifiers to any
later -a switch are deleted from the map. Fach -a switch affects object files until a new -
a switch is encountered. Note that the -a switch is cumulative.

8. Using 80/MAP: VMS

The 80/MAP map generator is invoked using UNIX conventions under UNIX and PC-
DOS and using VMS conventions under VMS. This chapter describes the use of 80/MAP
under VMS. See Chapter 7 {or a discussion of its use under UNIX and PC-DOS.

The map generator produces a single symbolic map (symbol table) for a collection
of arbitrary object files. It can produce such a map in a format suitable for machine
searching or in a format more suited to casual perusal. The map may reflect the order of
the symbolic information in the object file, or may be sorted by name or address.

BO/MAP is invoked by

BOMAP [options] file-spec[,file-spec...]

Command Qualifiers: Defaults:
/ARGS="options"
/ [NO]1BRIEF /NOBRIEF

/ITEMS= {items)

/MAP=file-spec
/SEPARATOR=character

/ [NO]SORT /NOSORT

One or more inpnt files are processed to produce one map output for each. The default

file type for input files is “B80”. The map is placed in a file with the name of the first
input file and a file type of “MAP".

The default map has the format
address file module type item
An optional, simpler format has lines with the format
address type item

By default, the entries in each line are separated by tab characters.

The most significant byte of any address is the segment of that address. Thus, ab-
solute addresses look like 00XXXX; relocatable addresses in the CODE segment look like
01XXXX; and similarly for the other segments. All addresses are given in hexadecimal.

By default, all external, local symbol, public symbol and line number information
goes into the map.

3-36 80/RL R & L Tools Guide

The processing of the map can be controlled by the following qualifiers:
fARGS="options”

Allows UNIX-style arguments (see Chapter 7) to be used. The option list
should be enclosed in double-quote marks (”) in order to preserve the case
of the options.

/BRIEF
/NOBRIEF

Controls the format of the map. By default, /NOBRIEF is in effect and the full
map is produced. The /BRIEF qualifier produces the simpler format.

ITEMS=({items)

Controls what items will appear in the map. By default, all items appear.
Any items specified are cummulative, so specifying /ITEMS=PUBLICS will
have no effect (it just adds PUBLICS to the default list which already contains
PUBLICS]). If only the publics are desired, specify /ITEMS=(NONE,PUBLICS).
To get everything but publics, specify /ITEMS=NOPUBLICS. The possible

items are:

ANCESTORS module ancestor records (effective for /BRIEF
only)

EXTERNALS external symbols

FILE_NAMES file names (effective for /BRIEF only)

LINE_NUMBERS line numbers

MODULE_NAMES ;nodule name records (effective for /BRIEF on-
y)

PUBLICS public symbols

SYMBOLS local symbols

ALL all of the above

NONE none of the above

This qualifier may be used both on the command and on individual files. On
individual files, it overrides anything specified on the command and starts over
again from the default of ALL.

/MAP-={ile-spec

May be used to change the name of the map file. It may not be negated nor
supplied without a file-spec. The name portion of the file-spec defaults to
the input file name. The file type defaults to “MAP".

/SEPARATOR-=character

May be used to change the character used to separate the fields of the map.
The default is “horizontal tab”, If a character is used which appears in any
of the fields themselves, a sort will produce unpredictable results.

Chapter 8: Using 80/MAP: VMS 3-37

{SORT=type
/NOSORT

Controls how the map file is sorted. By default, the map is unsorted (sorted
by order of appearance). This may be changed to a sort by either NAME
or ADDRESS. When sorting by name, all items with no address {ancestors,
externals, files, and modules} collate low to all symbols (public and local},
which collate low to all line numbers. Beware of changing the separator
character when sorting; the results are unpredictable if it appears anywhere

other than as the separator.
8.1 SIMPLE MAP GENERATION
The simplest map generation produces the symbolic map of a single object file:
80map ob]
places the default-format symbolic map of obj.b80 to obj.map. More than one object file
name may be given, resulting in a single super-map.
8.2 MAP FORMATS

By default, the map generator produces a machine-searchable map; this format can also
be specifically requested by the /NOBRIEF qualifier. Lines in such a map have the format

address file module type item

A simple map is produced by the /BRIEF qualifier. Lines in such a map have the format
address type item

The same information is present for either format, although a simple format map will
have more lines than its corresponding default format map. The map format may not be
changed after an object file has been processed.

The entries in each line in either format are separated by tab characters. The tab
character is initially the ASCII tab; it can be changed by the /SEPARATOR qualifier.

The address portion of a line gives the address of the item as a six-digit hexadecimal
number. The first two digits of an address give a numeric segment id; the remaining four
digits give an offset within that segment. Thus, an absolute item has an address in the
range 000000 to 0OIfff; a code segment relocatable item, in the range 010000 to 01ffff;
and similarly for the other segments. External names, file names, module names and
ancestor names never have addresses associated with them.

The file and module are the names of the file and module in which the item reside.
The type’s and the map format in which they may appear are

type description
extern external symbol name (both)
line line number {both)

public public symbol name (both)
symbol local symbol name (both)

ancest the ancestor module for the subsequent items (brief)

3-38 80/BL R & L Tools Guide

file the file containing the subsequent items (brief)

module the module containing the subsequent items (brief)

The item’s are either names or line numbers.

8.3 SORTED MAP GENERATION
The /SORT qualifier causes the symbolic map to be sorted as described in the table:

modifier sorting method

ADDRESS sort the map by address; type's without an address collate low to type’s with
an address; line numbers coilate high to symbols

NAME sort the map by name (item)
The map may not be changed from sorted to unsorted, or unsorted to sorted, after an

object file has been processed; otherwise, the last sorting method encountered takes effect
for the entire map.

8.4 MODIFYING THE CONTENTS OF A MAP

The various types of items which are actually selected for the map can be specified by
the modifiers to the /ITEMS qualifier, as given in the table:

modifier atom selected

ANCESTORS module ancestor names {ignored in /NOBRIEF format maps)
EXTERNALS external names

FILE_NAMES file names (ignored in /NOBRIEF format maps)
LINE_NUMBERS line numbers

MODULE_NAMES module names (ignored in /NOBRIEF format maps)
PUBLICS public symbol names

SYMBOLS local symbol names

ALL all of the above

NONE none of the above

The default setting is ALL: everything is sent to the map;

9. Using 80/STRIP

The stripper removes public symbols, local symbols, line numbers, and ancestor module
names from arbitrary object files. This reduces the size of the object file. It is commonly
performed only on fully linked and bound object files. 80/STRIP is invoked by

80strip [-1LpPsS] name [[-1LpPsS] name ...]

under UNIX and PC-DOS. It is invoked the same way under VMS except that the com-
mand name is “STRIP8G”. The switches are defined in Section 9.2 and examples are
given in Section 15.10 and Section 15.11.

9.1 SIMPLE OBJECT FILE STRIPPING

The simplest use of the stripper removes all possible information — public symbols, local
symbols, line numbers, and ancestor module names — from a single object file:

80strip objl.q

replaces obj1.q by its stripped form (the original file is lost except under VMS). Multiple
object files may be stripped at once:

80strip objl.q obj2.q obj3.q

replaces each of the named object files by its stripped form.

9.2 RESTRICTED OBJECT FILE STRIPPING

Any of the strippable information classes (except ancestor module names) may be retained
independently, under the control of six switches:

switch action

-1 line numbers and ancestor module names are retained

-p public symbols are retained

-8 local symbols and ancestor module names are retained

-L line numbers are removed; ancestor module names are removed if local

symbaols are also removed

-P public symbols are removed

3-40 80/RL R & L Tools Guide

-5 local symbols are removed; ancestor module names are removed if line num-
bers are also removed
The switches are cumulative. The default setting is -LPS.

Note under VMS, arguments must be enclosed in double-quote marks if they contain
any upper-case characters.

10. Using 80/HEX

The absolute hex object file producer produces an absolute hexadecimal form of an object
file from the object file itself. It is invoked by

80hex [name]

under UNIX and PC-DOS. It is invoked the same way under VMS except that the com-
mand name is “HEX80".

10.1 ABSOLUTE HEX OBJECT FILE PRODUCTION
The invocation

80hex
reads an object file from standard input, and
80hex cbjl.g
reads an object file from obj1.q. The absolute hex form is always sent to standard output.
Exactly one object file is read and processed. There are no switches.
10.2 RESTRICTIONS

The input to 80/HEX must be an absolute (bound) object file. If the file contains any
relocatable data records, external references, inter- or intra-segment references, or a
relocatable start address, a fatal error is provoked.

The 80/RL Relocation and Linkage Tools do not further process absolute hexadecimal
object files.
10.3 OUTPUT FILE FORMAT

Output records are entirely in ASCII. There are only two kinds of output record: data
and end. Each record begins with a colon, is terminated with a newline, and contains
no embedded blanks.

A data record looks like
:10500000000102030405060708090A0BOCODOEQF28\n

The first two digits give the number of data bytes, n, in hex — here, 10h or 16. The next
four digits give the address to which the first data byte is bound — here, 5000h. The next

3-42 80/RL R & L Tools Guide

two digits are always 00. The next 2n digits give the data bytes themselves, in hex -
here, the byte integers from 0 to 15 {00h to OFh). The last two digits are a checksum.

An end record looks like
:0052370176\n

The first two digits are always 00 {there are no data bytes in an end record). The next
four digits give the starting address of the object module, in hex — in this case, 5237h.
The next two digits are always 01. The last two digits are a checksum.

10.4 USE WITH VMS
Since the output of 80/HEX is placed on SYS$OUTPUT, it may be convenient to define
a command procedure such as

$delete 'pl'.hex;*

$define/user sys$output 'pl'.hex

$hex80 'pl'.qgB80

which will take it’s input from a file with a file type of “q80" and place the output in a
file with the same name but with a file type of “hex”.

11. Using 80/CROB]J and 80/DSOB]

The 80/CROBJ object file creator produces an object file from a human-readable form of
the object file (creation source). The 80/DSOBJ object file displayer inverts the process,
producing creation source from an object file.
11,1 CREATION SOURCE FORMAT
Creation source is essentially a byte-by-byte ASCII hexadecimal form of the desired object
file. The only items in the resulting object file which are not given in ASCII hex are
default (processor-calculated) record lengths
default (processor-calculated) checksums
® object file information which has the form of a name: a one-byte count followed
by that many (printable) characters

Other symbolic information may be included in creation source, but such information is
considered to be a comment, and is not processed: there are no symbolic forms for the
different record types, segment names, or anything else. Comment information cannot
contain (, }, *,’, or 0 (digit zero).

The object file creator will always correctly process the output of the object file
displayer, which may be used as a pattern for user-generated creation source.

11.1.1 Creation Source Elements

The basic elements of creation source are “whitespace”, “numbers”, and “names”.

11.1.1.1 Whitespace

Whitespace is an arbitrary-length (nonzero) sequence of blanks, tabs and newlines.

11.1.1.2 Numbers

A number is a string of 2n+1 hex digits, n > 0. The first digit must be zero. Every
succeeding pair of digits defines a byte datum. Bytes are given in 8080 memory order:
the number 001F0 represents the two sequential bytes (01, Foh) or the 8080 word (FO01h),
not the 8080 word (01F0h). A number must be followed by either whitespace, [, or).

3-44 80/RL R & L Tools Guide)

11.1.1.3 Names
A name is an item of the form

name-length name-characters

The name-length is a byte, so there may be from 0-255 name-characters in a name [the

total length of the construct is from 1-256 bytes). In creation source, a name may be
written as

'name-characters'

where the name-characters are taken from the set of the twenty-six letters, the ten decimal
digits, and the special characters @ and 7.

11.1.2 Creation Source Records
Creation source takes the form of a sequence of records. A record has the form

(record-type record-length record-bddy } checksum

The first character of a record is an open parenthesis. The record type is given by a

number. The record length (the length of the record body and checksum) may be an -
asterisk or a number. A number gives the actual record length; an asterisk is a default

indicator — the correct length is not important, and is no more than 1025. The record

body may contain an arbitrary collection of names and numbers, and is followed by a

close paren. The checksum may be an asterisk or a number. A number gives the actual .
checksum; an asterisk is a default indicator — the actual value is not important,)

11.2 OBJECT FILE CREATION
BO/CROB]J is invoked as

80crobj [-cC] [file]

under UNIX and PC-DOS. It is invoked the same way under VMS except that the com-
mand name is “CROBJ80”. The invocation

80crobj
reads creation source from standard input, and

80crobj objl.Q
reads creation source from obj1.Q. The object file is always written to standard output.
Exactly one creation source file is read and processed.

By default, the object file creator promotes lower-case letters in names to upper-case;
although there is no casual use of the creator which requires it, the -¢ switch turns off
case promotion.

If the creation source file contains a numeric record length or a numeric checksum,
that numeric value is written to the object file; if it does not match the actual record
length or checksum, a nonfatal error message is sent to standard error.

The object file creator knows nothing about legal record types or specific record ‘
formats; every record type is considered legal. }

Chapter 11: Using 80/CROBJ and 80/DSOB] 3-45

11.3 OBJECT FILE DISPLAY
80/DSOB]J is invoked as

80dsobj [-cClL] [name]

under UNIX and PC-DOS. It is invoked the same way under VMS except that the com-
mand name is “DSOBJ80". The invocation

80dsob]
reads an object file from standard input, and

80dsobj objl.q

reads an object file from obj1.q. The creation source is always written to standard output.
Exactly one object file is read and processed. The object file may not be an 80/DS library.
The creation source lines produced are no longer than 80 characters (plus a newline).

By default, the object file displayer gives record lengths and checksums as numeric
values; the -1 switch causes any record length no greater than 1025 to be given as an
asterisk (a default indicator), and the -c switch causes each checksum to be given as an
asterisk (a default indicator),

Numbers are displayed in groups of no more than four bytes (a leading zero and up
to eight digits). Names longer than 62 characters are displayed as a one-byte numeric
length followed by the proper number of numeric data bytes, rather than as quoted strings.
Name characters and hexadecimal digits are given in upper-case.

The record type, a comment giving a mnemonic for the record type, the record length,
and any unrepeated fields in a record are displayed on one line; the first repeated field
starts on a new indented line. If the record type has no repeated fields, the checksum is
given on the same line with the record type; otherwise, it is given on the same line as
the last repeated field.

The object file displayer considers any record which does not have the form of a legal
and recognized 8080 object record to be in error. It places a specific warning comment
in the creation source near the error, and the warning comment

{<<<K<<L previous record had error >>>>>>

is inserted between the record in error and the next record. If the displayer encounters

a relocatable or fixed-up data record with a record length greater than 1025, it places the
warning comment

<<<<<< data record is too long >>>>>>

between the data record and the next record. If any records provoke warnings, a count of
such records is sent to standard error after the input file has been processed. Fatal error

messages are sent only to standard error, and are preceded by the ordinal of the record
provoking the error.

3-.46 80/RL R & L Tools Guide

11.4 SPECIAL VMS CONSIDERATIONS

Since these utilities take their input from SYS$INFUT and place their output on
SYS$OUTPUT, it may be convenient to define a command procedure such as

$delete 'pl'.dso;*

$define/user sysfoutput 'pl'.dso
$define/user sys$input 'pl'.g80
$dsobj 80

which will run 80/DSOB], taking it’s input from a file with a file type of “q80" and place
the output in a file with the same name but with a file type of “dso”.

N

12. Using the Library Tools

Two tools exist for library management: the library creator, 80/LIBCR, and the library
lister, 80/LIBLS.

12.1 SIMPLE LIBRARY CREATION
80/LIBCR is invoked as

80liber [-f input] libname [objname ...]

under UNIX and PC-DOS. 1t is invoked the same way under VMS except that the com-
mand name is “LIBCR80™.

The simplest use of the library creator generates a library from a list of (object) file
names;

80liber x.1ib al.q a2.q ... an.q

generates the library x.Iib from the n object files. If no object file names are given, an
empty library is created. If any of the object files is actually an Intel-format library, or is
the concatenation of several object files, as might be produced by

cat >cat.q bl.q b2.q ... bn.q

under UNIX, the library creator considers each module in such an object file a separate
input file.

12.2 MANY-MEMBER LIBRARY CREATION

The library creator recognizes a -f option. This option directs the library creator to use
the next argument as the name of a file containing the names of object files to be added
to the library (an auxiliary input file). If the next argument is ‘-', standard input is read
for object file names. If this option is present, it must precede all other file names. Any

object files named in the invocation are processed before the files named in the auxiliary
input file.

3-48 B80/RL R & L Tools Guide

12.3 SIMPLE LIBRARY LISTING
80/LIBLS is invoked as

80libls [-px] {[libname ...]

under UNIX and PC-DOS. It is invoked the same way under VMS except that the com-
mand name is “LIBLS80".

The simplest use of the library lister generates an indented listing of the module
names in an 80/PL library:

80libls x.1ib

sends a list of the module names in x.1ib to standard output. The -p switch additionally
causes the public names associated with each module to be sent to standard output. The
-x switch selects an alternate, unindented format for the list.

If no library names are given, the lister reads library names from the standard input.

12.4 LISTING FORMATS
The default listing format for a library looks like

library-name-1
module-name-1
public-name-a
public-name-b
module-name-2
public-name-c

although the public names do not appear by default. The alternate, unindented listing
format looks like

library-name-1:module-name-1: public-name-a
library-name-1: module-name-1:public-name-b
library-name-1: module-name-2: public-name-c

although, again, the public names (and their assoctated colons) do not appear by default.

13. Using the Tools Together

This chapter describes some of the ways in which the linker, binder, and other tools may
be used together (sometimes more than once) to perform various useful tasks.

13.1 OVERLAYS

The construction of overlaid programs requires somewhat more work than the construc-
tion of an equal number of non-overlaid programs. Overlaid programs which do not ref-
erence the MEMORY segment are considered “simple”. If the MEMORY segment must
be referenced, either the overlay object modules must not reference MEMORY by the

normal compiler or assembler keywords, or else every overlay must be sent through the
binder twice. All three cases are described.

13.1.1 Making a Simple Overlay

The following procedure is used to construct a root and a number of overlays (the linker
and binder invocations may be found in Section 15.14)

1. Link and bind the pieces of the root, producing a first approximation to the root.
Send the output of the linker to a file other than c.out, send the output of the
binder to a file other than d.oui, and obtain a segment map from the binder.
Unresolved external references to the overlays may still be present. If necessary,
adjust the size of the stack to allow for the maximum stack usage by any overlay.

Call the address at which the segment map indicates the overlays may be loaded
next.

2. Link the pieces of the first overlay with the (bound) publics of the root (by using
the linker -p option, or the /FUBLICS_.ONLY qualifier for VMS, on the root), and
bind the linked output to an address no less than next. The resulting overlay has
had all external references to things in the root satisfied. No unresolved externals
should be present.

Repeat the previous step for every other overlay.

Link the previously-linked (but unbound) root with the {bound) publics of all
the overlays (by using the linker -p option, or the /PUBLICS_.ONLY qualifier for
VMS, an each of the overlays) and bind the linked output. The resulting root
has had all external references to things in the overlays satisfied (the root’s entry

points to the different overlays must be unique publics). No unresolved externals
should be present.

In general, producing a root and its n immediately-subordinate overlays requires n+1

3-50 B80/BL R & L Tools Guide

invocations of the linker and binder. If an overlay itself has overlays, the process is
continued, always from the root outward.

13.1.2 Making an Overlay Which References MEMORY Indirectly

A public variable true$memory$base is initialized to the address of the memory segment
by the raot. The overlays base an array true$memory on true$memory$base. Construct
the overlay as in Section 13.1.1, but with the following modifications. Obtain a segment
map from the binder for each overlay. From these maps, determine the lowest address
for the memory segment which will not be destroyed by any of the overlays; call this
address mem. Then when binding the root for the last time, place the MEMORY segment
at mem rather than at its default Iocation. The linker and binder invgcations to do this
may be found in Section 15.15.

13.1.3 Making an Overlay Which References MEMORY Directly

Both the root and the overlays reference the memory segment in the normal manner.
Construct the overlay as in Section 13.1.2, but with the following modifications. When
linking the overlays, send the output of the linker to a file other than c.out. Determine
mem, and then re-bind each overlay, this time placing the memory segment at mem rather

than at its default location. The linker and binder invocations to do this may be found
in Section 15.16.

13.2 REMOVING SPECIFIC PUBLIC DEFINITIONS

Consider a library member which is itself a complicated program. Suppose the member
is constructed by linking together three object modules. These three object modules
communicate with each other via public symbols. The potential exists for conflict
between these “private” public symbols and the public symbols in any other file to which
the library member is linked. If the linked module is run through the stripper, the entry

point name or names are lost; if nothing is done, duplicate public definitions will be
reported.

The solution is to use the object file displayer, an editor, and the object file creator.

¢ Link the library member in the normal fashion.

® Generate creation source for the linked output with the object file displayer;

standard output must be redirected, and default checksums and record lengths
should be requested.

Edit the creation source to remave the “private” public definitions.
e Finally, reconstruct an object file from the edited creation source with the object
file generator.

This procedure may also be useful in some overlay schemes.

14. Common Topics

This chapter discusses various topics which are common to many of the 80/RL relocation
and linking tools.

14.1 FUNCTIONS

This section describes some of the things each of the relocation and linkage tools can
and cannot do.

14.1.1

14.1.2

The Functions of 80/LINK

It produces one output object file from one or more input object files or modules.

It produces a segment in the output object module for every distinctly-named
segment in the input object files. Four “normal” segments, one unnamed COM-
MON segment, and at most 249 named COMMON segments are allowed. For the
purposes of this discussion, a COMMON segment is equivalent to a COMMON
block.

It combines like-named segments from the input modules into single segments
(conceptually — it adjusts the relative addresses of the like-named segments
properly, but does not reorder the data records).

It attempts to convert external references into intra- or inter-segment references.
If it cannot resolve all external references, it generates a warning message.

It maintains information about the ancestry of any line numbers and local symbols
in the input modules.

It does not generate a symbol table or a segment map.

It does not indicate what modules were used in generating the final linked
module.

It does not allow the module name of the final linked module to be changed
arbitrarily.

It does not allow arbitrary library members to be specifically included in the final
linked module.

The Functions of 80/LOC and 80/THEX

Each binds the relocatable segments, symbols, and line numbers of a single object
module to physical addresses (assigns physical addresses).

Each resolves inter- and intra-segment references into absolute references.

3-52 80/RL R & L Tools Guide

14.1.3

14.1.4

Each issues a warning if external references remain in the object module.
Each can assign physical addresses to segments in an arbitrary order.
Each can modify the length of any segment.

Each can produce a memory map of the relocatable segments and previously-
bound (absolute) data records.

Each can coalesce data records referencing adjacent memory into a single data
record.

Each generates a symbol table.

Neither removes public symbol, local symbol, or line number information.

The Functions of 80/MAP

It produces a map of the symbolic information in an object module {the object
module need not be absolute).

It can sort the map so produced, either by address or by symbol.

It can delete entire classes of symbolic information from the map.

The Functions of 80/STRIP

It removes entire classes of symbolic information from an object module {the
object module need not be absolute).

14.2 DEFAULT INPUTS AND QUTPUTS

The table below shows the default inputs and outputs of the various tools under UNIX
and PC-DOS. It is not meaningful for VMS.

In the table, stdin is standard input, stdout is standard output.

program default input default output restrictions

80/CROBJ stdin stdout can’t redefine output
80/DSORB]J stdin stdout can't redefine output
80/HEX stdin stdout can't redefine output
80/LIBCR (none) (none) can't use stdin or stdout
80/LIBLS {none) stdout can’t redefine output
80/LINK (none) c.out can't use stdin or stdout
80/LOC c.out d.out can't use stdin or stdout
80/MAP stdin stdout can't redefine output
80/STRIP (none) (input file) can’t use stdin or stdout

Chapter 14: Common Topics 3-53

14.3 DEFINITIONS

This section defines a few of the terms that are used in discussing the various relocation

and linking tools.
absolute
absolute data

absolute module

absolute public
absolute segment
binder

bound
creation source

creator

debug information

displayer
linker

map

map generator

partial segment

publics-only file
stripper

switch modifier

Bound to a physical address or physical addresses; generally
synonymous with bound.

Data which refers to specific physical 8080 addresses.

An object module which has been bound to physical addresses (either
by the method in which it was created, or by virtue of having been
passed through the binder)

A public which has a physical 8080 address associated with it.

A segment which has physical 8080 addresses associated with it. An

absolute segment no longer has a name associated with it in an object
file.

A program which binds (associates) object module segments to physi-
cal addresses; 80/LOC.

Generally synonymous with absolute.
A primitive readable form for an object file.

A program which produces an object file from creation source:
80/CROB]J.

Local symbols, line numbers, and ancestor module names. These are
never required for relocation and linkage, but may be useful when
debugging an executable program.

A program which produces creation source from an object file; 80/D-
SOBJ.

A program which produces a single object module from a collection
of object modules, maintaining the inter-module references in a con-
sistent format; 80/LINK.

A human-readable association of symbolic and address information.

A program which displays the association between symbols and ad-
dresses (physical or relocatable); 80/MAP.

A relocatable segment from a single input object module. To combine
two partial segments means to combine the like-named segments from
two input object modules.

A file which is used only for the absolute public definitions which it
contains,

A program which removes classes of information from a file;
80/STRIP.

The modifier to a switch is just the remainder of the switch ar-
gument. Switch modifiers may be simple (contain only alphabetic

3-54 80/RL R & L Tools Guide

and numeric characters) or compound (contain special characters,
such as +, -, =).

15. Examples: UNIX and PC-DOS

This chapter presents a number of examples that demonstrate the use of the 80/RL reloca-
tion and linking tools under the UNIX and PC-DOS operating systems. See Chapter 16
for a description of their use under VMS.

15.1 SIMPLE DEFAULT LINK
80link objl.q obj2.q ... objn.q

Each file is an cobject file or a library. The output is left in c.out.

15.2 SIMPLE REDIRECTED LINK

80link objl.q -0 ovl.1lnk obj2.q ... objn.q

Each file obj1.q, obj2.q, ... is an object {ile or a library. The output is left in ovlLInk.
80link objl.q obj2.q ... obin.q -o

Fatal error: the linker requires a file name for the -o switch.
80link -0 x objl.q -0 y obj2.q ... objn.q

Fatal error: the linker -0 switch may be used only once.

15.3 DEFAULT LINK USING BOUND PUBLICS
80link x1.q x2.q x3.q -p a x4.q x.lib

Bound (absolute) publics in a resolve externals in x1.q, x2.q, and x3.q (but not in x4.q
or x.1ib).

B0link -p b x1.q x2.q x3.q x4.q x.1ib

The object file b is searched for absolute publics, but any found are ignored (don’t do
this).

15.4 LIBRARIES WITH MULTIPLY-DEFINED PUBLICS
Suppose the library 1ib? has these members in the indicated order:

1. M1a has the public a
2. M1b has the external a and the public b

3.56 80/RL R & L Tools Guide

3. Mic has the public a

Mi1c contains a default definition of a. If both a and b are external when lib1 is encoun-
tered, then M1a and M1b will be extracted. If b is external and a is neither public nor
external when lib1 is encountered, then Mib and M1c will be extracted.

Suppose the library 1ib2 has these members in the indicated order:

1. MzZ2a has the public ¢
2. M2b has the publics ¢ and d
3. M2c has the public ¢

It is not possible to extract M2c. If d is external and ¢ is neither public nor external
when lib2 is encountered, then M2b will be extracted, and no error will be noted. 1f d
is external and ¢ is public when lib2 is encountered, then M2b will be extracted, and a
“duplicate public” error will be noted (the definition of ¢ in M2b is not used to resolve
any external references to ¢, even ones in modules provided to the linker after lib2). If
both ¢ and d are external when Iib2 is encountered, then M2a and M2b will be extracted,
and a “duplicate public” error will be noted (again, the definition of ¢ in M2b is not used
to resolve any external references to c).

15.5 SPECIFYING ALIGNMENT

Suppose the object file c.out contains the following segments:

1. byte-aligned CODE segment, length 150 bytes (96h)
2. page-aligned DATA segment, length 193 bytes (Oc1h)
3. inpage-aligned STACK segment, length 48 bytes (30h)

Invoking the binder with and without the -a switch causes segments to be bound as
follows:

80loc -1500Ch
CODE is bound to 05000h, DATA to 05100h, STACK to 051c1h;
80loc -15030h -scode -a20h
CODE is bound to 05030h, DATA to 05100h [not 050eQh), STACK to 051cth;
80loe -15000h -sallother -al0h -sstack
CODE is bound to 05000h, DATA to 05100h, STACK to 051d0h;
80loc -15000h -sallother -a20h -sstack
CODE is bound to 05000h, DATA to 05100h, STACK to 05200h (not 051e0h).

15.6 ADJUSTING THE SIZE OF A SEGMENT
80loc -15000h -scode -sdata -sstack=100

sets the size of the stack to 100 (decimal) bytes (typically, the linked stack size — the
sum of the sizes of the stack segments in the linker’s input - is far larger than actually
required}. Note that the last switch defines both the size and the position of the stack.

Chapter 15: Examples: UNIX and PC-DOS 3-57

15.7 SORTED AND COMPACTED BOUND OUTPUT
80loc -c -15000h

The input file is c.out and the output file is d.out. Segments are bound in their default
order, beginning at location 5000h. Data records which reference unresolved external
symbols are written to the output file before data records which do not reference un-
resolved external symbols. Data records which do not reference unresolved external
symbols appear in their physical address order (rather than their order of appearance in
the input file), and compacted. That is, a data record which contains data for physical
addresses 5000h through 5043h, and a data record which contains data for physical ad-
dresses 5044h through 5077h will be converted into a single data record which contains
data for physical addresses 5000h through 5077h.

15.8 SORTED AND COMPACTED BOUND OUTPUT, TEKTRONIX FORMAT

The 80thex utility may be used, in conjunction with 80loc, to produce compacted, sorted
cutput in Tetronix format.

80loc ~c -15000h
g80thex d. out

The first command is exactly the example in Section 15.7. The second command reads the
(absolute) object file d.out (produced by the first command), and converts it to Tektronix
LAS object format in the file e.cut. Data records will retain the same relative ordering,

although a single long data record in d.out may be converted into several shorter (but
adjacent) data records in e.out.

15.9 SYMBOLIC MAP EXAMPLES
80map root

An unsorted machine-searchable symbolic map of root is sent to standard output.
80map ovll ovl2 6v13

An unsorted machine-searchable symbolic map of the three overlays is sent to standard
output. Each line in the map indicates the file and module which produced it.

80map ~-fs ovll ovl2 ovl3

An unsorted simple symbolic map of the three overlays is sent to standard output. One
line is produced whenever the file, module, or ancestor module name changes. An
automatic (machine) search of standard output will not indicate the file or module in
which a symbol or line number resides.

80map -fs -sa -aafm runme

A simple symbolic map of runme, sorted by address, is sent to standard output. Only
line numbers and public, local and external symbols appear in the map.

80map -sa -aafm this
80map -sa this

produce identical machine-searchable symbolic maps of this, sorted by address.

80map -sn -awtl this -a-1l+s that -a-s+p tother -sa

3-58 80/RL R & L Tools Guide

produces a machine-searchable symbolic map of the local symbels from this, the line
numbers from that, and the public symbols from tother. The entire map is sorted by

address (not by name; the request for sorting by address overrides the request for sorting
by name).

80map this -fs that
Fatal error; The map format may not be changed after a file is processed.
80map this -sa that

Fatal error: The map may not be changed from unsorted (the default) to sorted after a file
is processed.

15.10 DEFAULT STRIP

80strip objl.q obj2.q obj3.q
remaves all public symbol, local symbol, line number, and ancestor module name infor-
mation from the three object files obj1.q, obj2.q, and obj3.q. Note that none of the three
files may later be used to resolve external references.
15.11 RESTRICTED STRIP

80strip -p big.q

. removes all Iocal symbol, line number, and ancestor module name information from the
object file big.q; public symbols are not removed. The file may later be used to resolve
external references.

80strip -p a.q -1 b.q -Ps ¢.q -LS d.g

The four files are affected as indicated:

file information removed

a.q local symbol, line number, ancestor module name

b.q local symbo! (ancestor module names are not removed)

c.q public symbol

d.q public symbol, local symbol, line number, ancestor module name

15.12 MANY-MEMBER LIBRARY CREATION

Suppose the object files al.q, a2.q, ... , a200.q must be placed in the library big.lib.
Suppose further that the text file qux.in contains the lines

al.q a2.q a3.q a4.q
as.q
a6.q aT7.q

al98.q al99.q a200.q
Then either of the invocations

80liber big.lib al.q a2.q a3.q ... al99.q a200.q

Chapter 15: Examples: UNIX end PC-DOS 3-59

or
80liber -f aux.in big. lib

will create the desired library.

15.13 LIBRARY LISTING
80libls x.1ib ¥.1lib

Lines of the form

x.1lib
first
second
y.1lib
organic
inorganic
physical

are sent to standard output;
801ibls -px x.1lib y.1lib

sends lines of the form

.lib:first:a

.1lib: first: b

.1lib: second: hippo

.1lib: second: rhino

.1lib: organic: saturated
.1ib:organic: unsaturated
.1lib: inorganic: metals
.1lib: inorganic: nonmetals
.1lib: physical:classical

T I

to standard output.

15.14 SIMPLE OVERLAY

80link ra.q rb.q re.g x.1ib -0 root.1lnk
80loc root.1lnk -15000h -o root -m root.map
: Assume root.map indicates that

: next is 8000h

801ink oa.q ob.q -p root x.1lib

80loc -18000h -0 overlayl

80link pa.q pb.q -p root x.lib

80loc -18000h -o overlay2

80link root.1lnk -p overlayl -p overlay2 ...
80loc -15000h -0 root

3-60 80/RL R & L Tools Guide

15.15 OVERLAY REFERENCING MEMORY INDIRECTLY

80link ra.q rbh.q re.q x.1ib -o root. lnk
80loc root.1lnk -15000h -0 root -m root.map
: Assume root. map indicates that

next is 8000h.
8011nk oa.q ob.q -p root x.1ib
80loc -18000h -o overlayl -m ovl.map
80link pa.q pb.q -p root x.1ib
80loc -18000h -o overlay2 -m ov2.map

: Assume ovi.map, ov2Z.map,
indicate that mem is 9600h.
8011nk root. lnk -p overlayl -p overlayZ2 ...
80lo¢c -15000h -sallother -19600h -smemory -o root)

15.16 OVERLAY REFERENCING MEMORY DIRECTLY
80link ra.q rb.q re.q x.1ib -0 root.1lnk

80loc root.lnk -15000h -0 root -m root.map
Assume rpot.map indicates that next is 8000h.

80link oa.q ob.q -p root x.1lib -0 ovl.lnk

80loc -18000h -0 overlayl -m ovl.map

80link pa.q pb.g -p root x.1ib

80loc -1800Ch -o overlay2 -m ov2.map

Assume ovi.map, ovZ.map, ... indicate
: that mem is 9600h.
80loc ovi.lIlnk -18000h -sallother -1960Ch
~-smemory -0 overlayl
80loc ov2.1lnk -18000h -sallother -19600h
-smemory -o overlay2

80link root.lnk -p overlayl -p overlay2 ...
80loc -15000h -sallother -1960Ch -smemory -o root

15.17 OVERLAYING TWO SEGMENTS
Two segments can be overlaid by absolute physical addresses
80loc -15000h -s/coml/ -15000h -s/com2/ -lmax

or by symbolic addresses
80loc -15000h -s/comi/ -1l/coml/ -s/com2/ -lmax

Each of the two examples causes the two COMMON blocks com1 and com2 to use the
same memory. The MAX pseudo-segment guarantees that later segments do not overlap
the end of com1. The second method is much more useful than the first whenever seg-
ment order is at least partially fixed, but only one segment address is actually important:

80loc -15000h -sdata -sstack -s/coml/ -1/coml/
-s/com2/ -lmax -scommons

Chapter 15: Examples: UNIX end PC-DOS 3-61

In every example, an overlap indication would be sent to the segment map, if requested.

15.18 REMOVING “PRIVATE” PUBLICS
It is desired to remove all public symbols except one, two, and three from the object file
XX.q.
B0dsobj -cl xx.q >xx.Q
edit xx.Q, removing all publics except one,

: two, and three
B0crobj xx.Q >xx.q

xx.q has effectively been partially stripped.

16. Examples: VMS

This chapter presents a number of examples that demonstrate the use of the 80/RL
relocation and linking tools under the VMS operating system. See Chapter 15 for a
description of their use under UNIX and PC-DOS.

‘16,1 SIMPLE DEFAULT LINK
80link objl,obj2,...,objn

Each file is an object file or a library with a file type of “Q80”. The output is left in
obj1.i80.

16.2 SIMPLE REDIRECTED LINK
80link/output=ovl objl,obj2,objn
Each file obj1.q80, 0bj2.q80, ... is an object file or a library. The output is left in ovi.180.

16.3 DEFAULT LINK USING BOUND PUBLICS
80link x1,x2,x3,a/publics,x4,x.1ib

Bound (absolute) publics in a.q80 resolve externals in x1.q80, x2.q80, and x3.q80 (but
not in x4.q80 or x.lib).

80l1link b/publics,xl,x2, x3, x4, x. 1ib
The object file b is searched for absolute publics, but any found are ignored (don’t do
this).
16.4 LIBRARIES WITH MULTIPLY-DEFINED PUBLICS
Suppose the library lib1 has these members in the indicated order:

1. Mia has the public a
2. Mib has the external a and the public b
3. Mi1c has the public a

M1c¢ contains a default definition of a. If both a and b are external when lib1 is encoun-
tered, then M1a and M1b will be extracted. If b is external and a is neither public nor
external when lib1 is encountered, then M1b and M1c will be extracted.

Suppose the library 1ib2 has these members in the indicated order:

3-64 B80/RL R & L Tools Guide

1. M2a has the public ¢
2. M2b has the publics c and d
3. M2c has the public ¢

It is not possible to extract M2c. If d is external and ¢ is neither public nor external
when lib2 is encountered, then M2b will be extracted, and no error will be noted. If d
is external and c is public when lib2 is encountered, then M2b will be extracted, and a
“duplicate public” error will be noted (the definition of ¢ in M2b is not used to resolve
any external references to ¢, even ones in modules provided to the linker after 1ib2). If
both ¢ and d are external when lib2 is encountered, then M2a and M2b will be extracted,
and a “duplicate public” error will be noted (again, the definition of ¢ in M2b is not used
to resolve any external references to c).

16.5 ALIGNMENT

Suppose the object file ¢.180 contains the following segments:

1. byte-aligned CODE segment, length 150 bytes (96h)
2. page-aligned DATA segment, length 193 bytes {0c1h)
3. inpage-aligned STACK segment, length 48 bytes (30h)

Invoking the binder with and without the alignment option causes segments to be bound
as follows:

80loc ¢ /MEMORY=LOC: 5000h
CODE is bound to 05000h, DATA to 05100h, STACK to 051c1h;
80loc ¢ /MEMORY= (LOC: 5030h, SEG: code, ALIGN: 20h)
CODE is bound to 05030k, DATA to 65100h (not 050e0h), STACK to 051c¢th;
80loc ¢ /MEM= (L:5000h, S:allother, A: 10h, 8: stack)
CODE is bound to 05000h, DATA to 05100h, STACK to 051d0h;
80loc ¢ /MEM= (L:5000h,5:allother, A: 20h, 8: stack)
CODE is bound to 05000h, DATA to 05100h, STACK to 05200h (not 051e0h).

16.6 ADJUSTING THE SIZE OF A SEGMENT

80loc ¢ /MEM=(L:5000h, S: code, S:data, S: stack=100)

sets the size of the stack to 100 (decimal) bytes (typically, the linked stack size — the
sum of the sizes of the stack segments in the linker’s input — is far larger than actually
required). Note that the last switch defines both the size and the position of the stack.

Chapter 16: Examples: VMS 3-65

16.7 SORTED AND COMPACTED BOUND OUTPUT
80loc ¢ /COMPACT /MEMORY= (L:5000h)

The input file is ¢.180 and the cutput file is c.b80. Segments are bound in their default
order, beginning at location 5000h. Data records which reference unresolved external
symbols are written to the output file before data records which do not reference un-
resolved external symbols. Data records which do not reference unresolved external
symbols appear in their physical address order (rather than their order of appearance in
the input file), and compacted. That is, a data record which contains data for physical
addresses 5000h through 5043h, and a data record which contains data for physical ad-
dresses 5044h through 5077h will be converted into a single data record which contains
data for physical addresses 5000h through 5077h.

16.8 SYMBOLIC MAP EXAMPLES
80map root

An unsorted machine-searchable symbolic map of root is sent to root.map.
80map ovli,ovlZ2, ovl3

An unsorted machine-searchable symbolic map of the three overlays (ovi1.b80, ovi2.bso,

and ov13.b80) is sent to ovil.map. Each line in the map indicates the file and module
which produced it.

80map /brief ovll,ovlZ,ovls

An unsorted simple symbolic map of the three overlays is sent to ovil.map. One line is
produced whenever the file, module, or ancestor module name changes. An automatic

(machine) search of the output will not indicate the file or module in which a symbol or
line number resides.

BO0map /brief /sortsaddress runme -
/items= {noanc,nofil, nomod)

A simple symbolic map of runme.b80, sorted by address, is sent to standard output. Only
line numbers and public, local and external symbols appear in the map.

80map /sort=address /items=(noanc,nofil,nomod)} this
80map /sortzaddress this

produce identical machine-searchable symbolic maps of this.b80, sorted by address.

80map /sort=names this/items= (none,line) -
that/items= (none, sym) -
tother/items= (none, pub)

produces a machine-searchable symbolic map of the local symbols from this.b80, the
line numbers from that.b80, and the public symbols from tother.b80. The entire map is
sorted by name.

3.66 80/RL R & L Tools Guide

16.9 DEFAULT STRIP
strip80 obil.q obj2.q obj3.q

removes all public symbol, local symbol, line number, and ancestor module name infor-
mation from the three abject files obj1.q, obj2.q, and obj3.q. Note that none of the three
files may later be used to resolve external references.

16.10 RESTRICTED STRIP
strip80 -p big.qg

removes all local symbol, line number, and ancestor module name information from the
object file big.q; public symbols are not removed. The file may later be used to resolve
external references.

strip80 -p a.q -1 b.q "-Ps" c.q "~-L3" d.q

The four files are affected as indicated:

file information removed

a.q local symbol, line number, ancestor module name

b.q local symbol (ancestor module names are not removed)

c.q public symbol

d.q public symbol, local symbol, line number, ancestor module name

16.11 MANY-MEMBER LIBRARY CREATION

Suppose the object files al.q, a2.q, ... , 0200.q must be placed in the library big.lib.
Suppose further that the text file aux.in contains the lines

al.q a2.q a3.q a4.q
aj.q
ab.q aT.q

;ol.léls.q al99.q a200.q
Then either of the invocations

libcer8o big.lib al.q a2.q a3.q ... al99.q a200.q
or

liber80o -f aux.in big. lib

will create the desired library.

16.12 LIBRARY LISTING

libls80 x.1lib y.1lib

Lines of the form

x.1ib
first
second
v.1lib
organic
inorganic
physical

are sent to standard output;
1ibls80 -px x.1ib y.1lib

sends lines of the form

.lib:first:a

.lib: first:b

lib: second: hippo

.1lib: second: rhino

.1ib: organic: saturated
.1lib: organic: unsaturated
.1lib: inorganic: metals
.1lib: inorganic: nonmetals
.lib: physical:classical

G R M KN

to standard output.

16.13 SIMPLE QVERLAY

Chapter 16: Examples: VMS 3-67

80link/root.1lnk ra.q rb.q re.q x.1ib
80loc/out=root/map=root.map root.lnk /mem=L:5000h

Assume root.map indicates that

next is 8000h 80l1link oa.q, ¢b.g,root/pub,x.1lib

8010c/out overlayl oa /mem=L:8000h
B0link pa.q,pb.q,root/pub,x.lib

80loc/out=overlay2 pa /mem=L:8000h -0 overlay2

80link root. lnk, overlayl/pub, overlay2/pub ...

80loc/out=root root /mem=L:5000h

3-68 80/RL R & L Tools Guide

16.14 OVERLAY REFERENCING MEMORY INDIRECTLY

80link ra.q,rb.q,rec.q,x.1ib /out=root. lnk
80loc root. lnk /mem=L:5000h /out=root /map=root.map
Assume root.map indicates that
next is 8000h.
801.1nk oa.q,ob.q,root/pub,x.1ib
80loc ¢oa /map=L:8000h /out=overlayl /map=ovl.map
801ink pa.q,pb.q,root/pub,x.lib
80loc pa /map=L:8000h /out=overlay2 /map=ovZ2.map

: Assume ovl.map, ov2.map,
indicate that mem is 9600h.

8011nk root. Ink, overlayl/pub, overlay2/pub ...

80loc root /mem=(L:5000h,S:allother,L: 9600h, S: memory) -
/fout=root

16,15 OVERLAY REFERENCING MEMORY DIRECTLY

80link ra.q.rb.q,rc.q,x.1ib /out=root. lnk
80loc root.1lnk /mem=L:5000h /out=root /map=root.map
Assume root.map indicates that next
is 8000h.
8011nk oa.q,ob.q,root/pub,x.1ib /out=ovl.lnk
80loc oa /map=L:8000h /out=overlayl /map=ovl.map
80link pa.q,pb.q,roct/pub,x.1lib
80loc pa /mem=L:8000h /fout=overlay2 /map=ovZ2.map

Assume ovl.map, ov2.map, ... indicate
: that mem is 9600h.
801oc ovi.1lnk /mem=(L:8000h,S:allother,L:9600h, -
S:memory) /out=overlayl
80loc ov2. Ink /mem= (L:8000h, $:allother,L:9600h, -
5: memory) /out=overlay2

80link root. lnk, overlayl/pub, overlayZ2/pub ...
80loc root /mem=(L:5000h,S:allother,L: 9600h, -
S: memory) /out=root

16.16 OVERLAYING TWQ SEGMENTS :
Two segments can be overlaid by absolute physical addresses

80loc f /mem={L:5000h,S:!comll ,L:5000h,
S:1 com2l , L: max)

or by symbolic addresses

80loc f /mem=(L:5000h,S:!| comll ,L:| comll,
S:| com2l , L:max)

Each of the two examples causes the two COMMON blocks com1 and com2 to use the

Chapter 16: Examples: VMS 3-69

same memory. The MAX pseudo-segment guarantees that later segments do not overlap
the end of comi. The second method is much more useful than the first whenever seg-
ment order is at least partially fixed, but only one segment address is actually important:

80loc file /mem= (L:5000h, $:data, S:stack, S:{ coml!,
L:1 comll ,S:| com2l ,L: max, Sscommons)

In every example, an overlap indication would be sent to the segment map, if requested.

Index

-a switch (binder) 19, 56

-a switch (map generator) 34, 57, 58, 65
-B invocation option 16

-c switch {binder) 20

-c switch (creator) 44

-c switch (displayer) 45, 61

-f option {library creator) 47

-f switch (map generator) 32, 57, 58
-1 switch (binder) 17

-1 switch (binder, symbolic) 60

-1 switch {displayer) 45, 61

-1 switch (stripper) 39, 58, 66

-m switch (binder) 19

-0 switch (binder) 16, 22

-0 switch (linker} 4, 10, 55

-p option (linker) 49

-p switch [library lister) 48

-p switch (linker) 5, 55, 59, 60, 67
-P switch {stripper) 39, 58, 66

-s switch (binder, compound) 18, 56
-s switch (binder, simple) 18

-3 switch (map generator} 33, 38, 57, 58, 65
-s switch (stripper) 39, 58, 66

-t switch (map generator) 33

-x switch (library lister) 48

-Xt invocation option 3, 16

[ARGS qualifier 9, 21, 36
{COMPACT qualifier 21
/ITEMS qualifier 36

/MAP qualifier 21, 36
MEMORY qualifier 22
/NOCOMPACT qualifier 21
MNOMAP qualifier 21
/NOQUTPUT qualifier 9, 22
MOSORT qualifier 37
/NOVERBOSE qualifier 10
{OUTPUT qualifier 9, 22

3-72 B80/RL R & L Tools Guide

/PUBLICS_ONLY qualifier 9, 11
{SEPARATOR qualifier 36
{SORT qualifier 37

{VERBOSE qualifier 10

80/LINK 3,9
80/LOC 15, 21
80/MAP 31, 35

Address alignment 19, 25

Alignment 6, 12, 19, 25

ALIGNMENT option 22

ALLOTHER pseudo-segment 17, 18, 23, 24, 58, 60, 64, 68
Argument files 2

Auxiliary input file [library creator) 47

B30 file type 21
Binder 15, 21
BMP file type 21
BRIEF qualifier 36

COMMONSs and externals 4, 5, 10, 11
COMMONSs and publics 4, 5, 10, 11
COMMONS pseudo-segment 17, 18, 23, 24
Creation source 43, 45, 53

Data overlap 19, 25, 61, 69
Default segment order 18, 24
DOS 2,3, 15

Examples 55, 63
Execution start address 4, 10, 18, 25, 42
Externals and COMMONSs 4, 5, 10, 11

Gaps 6, 12, 19, 25

Input file (binder) 16

Input file [creator) 44

Input file {displayer) 45
Input file (hex producer) 41
Input file (linker] 4, 10
Invocation methods 2
Invocation under PC-DOS 2
Invocation under UNIX 2
Invocation under VAX/VMS 2

L8O file type 9, 21
Library members 4, 10
Library search 4, 10
Linker 3,9
LOCATION option 22
Locator 185, 21

Main program 4, 10
Map file 19, 25

MAX pseudo-segment 17, 23, 60, 68
MEMORY segment considerations 49
Modifier (switch] 17, 18, 19, 23, 24, 25, 53
Module name 4, 10

MS-DOS 2, 3,15

Next available address 17, 19, 23, 25
NOBRIEF qualifier 36

Qutput file (binder) 16, 22

Output file (binder, restrictions) 17
Output file (creator) 44

Qutput file (displayer} 45

Output file (hex producer) 41
Output file (linker) 4, 10

Output file (linker, restrictions) 4

PC-DOS 2, 3,15

Pseudo-segments 17, 18, 23, 24
Publics and COMMONSs 4, 5, 10, 11
Publics-only file 5, 11, 53

{280 file type 9
Redirecting standard error file 2

Segment alignment 6, 12

Segment maps 19, 25

SEGMENT option 22

Segment order 18, 24

Segment overlap 19, 25, 61, 69

Segments not propagated into output 6, 12
Size of a COMMON block 5, 6, 11, 12, 18, 24
Size of a segment 5, 6, 12, 18, 24

STACK segment considerations 49
Standard error file, redirecting 2

Start address 4, 10, 18, 25, 42

Switch modifier 17, 18, 19, 23, 24, 25, 53

UNIX 2,3,15

VAX/VMS 2,9
VMS 2,9, 21

Index 3-73

