the tool for software designers

PDL/81

Ada" Design Language
Reference Guide

(Version 2.0)

Caine, Farber & Gordon, Inc. Warren Point International Ltd.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the software described herein is governed by
the terms of a license agreement or, in the absence of an agreement, is subject to
restrictions stated in subparagraph (c)(1) of the Commercial Computer Software
— Restricted Rights clause at FAR 52.227-19 or subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013,
as applicable. [Caine, Farber & Gordon, Inc.; 1010 East Union St.; Pasadena, CA

91106]

Comments or questions relating to this manual or to the subject software are welcomed
and should be addressed to:

In North America: In the Rest of the World:
Caine, Farber & Gordon, Inc. Warren Point International Ltd.
1010 East Union Street Babbage Road
Pasadena, CA 91106 Stevenage, Herts SG1 2EQ
USA England
Tel: (800) 424-3070 or Tel: 0438 316311

(818) 449-3070
Fax: (818) 440-1742 Fax: 0227 86521

Form Number: 9102-52

1 August 1988
1 December 1991

Copyright [1 1981, 1985, 1988, 1991 by Caine, Farber & Gordon, Inc. All Rights Reserved.

PDL/74, PDL/81, PDL/91, and the PDL prefix are trademarks of Caine, Farber & Gordon,
Inc. UNIX is a registered trademark of UNIX System Laboratories. PostScript is a regis-
tered trademark of Adobe Systems Incorporated. Ada is a registered trademark of the U.
S. Governmenment (Ada Joint Program Office). VAX, VMS, and ULTRIX are trademarks
of Digital Equipmeent Corporation. MS and XENIX are trademarks of Microsoft Corpora-

tion.

Contents

Chapter 1. Introduction
DesigningforAda

11
1.2
13
1.4
15

Chapter 2. General Information
FormatofaDesign

2.1

2.2
2.3
2.4

2.5
2.6
2.7

Chapter 3. Packages

Chapter 4. Text Segments
Unformatted Text Segments

4.1
4.2

Features and Capabilities of PDL/81

Document Styles andthe PDL/81 DataBase

Related Publications

A Note to the Reader

211 FrontMatter
2.1.2 DesignBody
213 Reports
214 FinalPage

Invocation of PDL/81
Overall Operation

Input Format
2.4.1 Tab Expansion on Input
2.4.2 Continuation of Input Lines

2.4.3 Special Characters

Command Lines

Including Alternate Source Files

Design Body Conventions

2.7.1 Segment Delimiting
2.7.2 Display of Segments
2.7.3 CommentStrings

Formatted Text Segments
4.2.1 Lists

WwWWwWwMN P B

O© O© O© O NNNNNNOO O O1O1

ii PDL/81 Ada Design Language Reference Guide

4211 BulletLists 15

4212 NumberedLists 15

4213 VerbLists 15

4.3 Switching Between Formatted and Unformatted Modes 16
Chapter 5. General Formatting Commands 17
5.1 Vertical Spacing Commands 17
5.2 Heading Commands 18
Chapter 6. Data Item Declaration 19
6.1 Datallems 19
6.2 Implicit Data Item Declaration i 20
6.3 Explicit Data Item Declaration (Data Segments) 21
6.3.1 Normal DeclarationMode 21

6.3.2 Special DeclarationMode 21
Chapter 7. Specification Segments 23
7.1 Defining Proceduresand Functions 23
7.2 Defining Taskso 24
7.3 Defining Data 24
Chapter 8. Flow Segments 27
8.1 Flow Segment Commandsuiiiitt 27
8.2 FlowSegmentBody 28
8.3 Reference Recognition 29
8.4 Labels 29
8.5 Block Names 30
8.6 Special Statements 30
8.6.1 Keywords and Secondary Keywords 30
8.6.1.1 Keyword Enhancement 31

8.6.2 Special StatementDisplay 32

8.6.3 ThelFConstruct 32

8.6.4 TheLOOP CONStrUCtSttt e e 33

8.6.5 TheEXIT Statement 34

8.6.6 TheCASEConstruct 35

8.6.7 TheBEGIN CoNnStruct, 35

8.6.8 TheRETURN Statement 35

8.6.9 The ACCEPT Construct 35
8.6.10 The SELECT CONStruCt o 36
8.6.11 The GOTO Statement 36
8.6.12 The EXCEPTION Construct 36
8.6.13 Miscellaneous Statements 36
Chapter 9. Text FUNCLIONS e 37
9.1 TheDATE Text Function 37
9.2 Underscoring of Text 38

9.3 Tagsand References 38

Contents iii

Chapter 10. Listing Control Commands 41
10.1 Specifying Design Titles 41

10.1.1 DefiningaPageHead i, 41
10.2 Specifyingthe ListingDate 42
10.3 Specifying Security Banners 42

10.3.1 SecurityBanner Style 43
10.4 Specifying “Special”’ BOXeS 43
10.5 Specifying Line Number Printing 44
10.6 Specifying Change Barst 44
Chapter 11. Advanced Featurest 45
11.1 Complexity Analysis e 45

11.1.1 Complexity Measurement Commands 45
11.2 Automatic Requirements Tracking 46

11.2.1 RequirementsIndex i 46
11.3 Consistency Checking e 47
11.4 Flow Figure Enhancement i 47
115 Designand CodeintheSameFile 48
Chapter 12. Processor Reports e 49
12.1 Segment Reference Treest et 49
12.2 Dataltem Index 50
12.3 Flow Segment INdeXt 50
12.4 Index of Overly Complex Segments, 51
125 Indexto Requirementst 51
12.6 Calls-in-ContexXt LISt e e 51

Appendices

AppendixX A. Error MESSAQES . . .ottt e 53
A.1 Non-Terminal Error MESSagesot 53
A2 Terminal Error MESSAgeSt 54
A3 Other Error MeSSaAgeSo v ittt e e e e 55
Appendix B. Listof Commands i 57
Appendix C. Sample PDL/81 Designs forAda 61
C.1 lllustration of Featurest 61

C.1.1 Output of PDL/81 ProCcessoruuuiuueennnnnnnn.. 61

C.1.2 Source Listingt 82
C.2 A Complete High-Level Design i 85

C.2.1 Output of PDL/81 ProCcessorouuiuuiennnnnne... 85

C.2.2 SOUrCe LIStING . ..o v it 118

1. Introduction

PDL/81 is a software tool intended as an aid to designing and documenting a pro-
gram or system of programs. The tool consists of a processor and a data base
which is used to tailor the processor to the particular requirements of the docu-
ment being produced. As distributed, the data base includes definitions for such
document styles as:

e program designs;

+ manuals and reports;
« memoranda; and

» business letters.

This manual describes the particular data base components which relate to for-
matting program designs which are intended to be implemented in the Ada pro-
gramming language. Other manuals (see Section 1.4) describe the other data base
components and the methods for modifying the data base.

The original version of PDL, known as PDL/74, was first developed in 1973. It
was intended exclusively for processing program design documents and displaying
these documents in a predetermined style. Over the years since the first release,
the large PDL user community has provided numerous suggestions for changes
and improvements. Most of these suggestions came from the desire to improve the
text handling capabilities of PDL/74 and the desire to have significantly more con-
trol over the detailed format of the resulting document. PDL/81 addresses these
desires directly while still presenting an interface to the designer which is easy to
use.

1.1 Designing for Ada

While the standard PDL/81 design style is intended for use with almost any de-
sired implementation language, the ada style is intended for use when design or
implementation requirements call for use of the Ada language. It has been found
to satisfy the needs of a design language based on the Ada programming language
while maintaining the readability of a PDL/81 design.

The PDL/81 ada style supports those features of the Ada language that are
suitable to the high-level design of software. It is entirely possible that a design
which was started in PDL/81 may, at some stage, be moved to a rigorous, but less

-1-

2 PDL/81 Ada Design Language Reference Guide

readable, Ada design language or rapid prototyping system prior to the start of
implementation.

1.2 Features and Capabilities of PDL/81
The development of PDL/81 was guided by three primary goals:

» to develop a system which extended the capabilities of PDL/74 in the area of
program design;

« to develop a system which could process designs written in the PDL/74 lan-
guage with little or no modifications of those designs being required; and

» to develop a system which was flexible enough to process both program de-
signs in the style of PDL/74 and conventional documents such as reports and
manuals.

The result is a tool which integrates the capabilities commonly associated with a
program design language processor and those of a text processing system.

This integration is accomplished by providing an extensive set of primitive for-
matting operations and a definitional language which allows a format designer to
compose abstract constructs from these primitive operations. As an example, a
document style for Ada program designs might contain such concepts as
“specification segment” and “task body segment” while a style for manuals might
contain such concepts as “chapter”, “enumerated list”, and “paragraph”.

The end user of PDL/81 uses these abstract concepts without any need to un-
derstand the underlying implementation or format design methods. Writing and
processing program designs is simple and straightforward while, at the same
time, the local project manager has significant control over the detailed layout and
appearance of the resulting design document.

The primitive operations of the Format Design Language allow the format de-
signer a very high degree of flexibility in creating document styles. Among the
available capabilities are:

« Complete control over page layout including sheet dimensions and top, bot-
tom, left, and right margins;

« Simple measurements of the cyclomatic complexity of a design;

« Tracking of requirements sections throughout a design;

« Checking that procedure definitions and invocations are consistent;

- Arbitrary running text at top and bottom of each page including security
banners with document classification and sheet count;

- Definition of primary and secondary keywords for use in program designs;

- Definition of layout and characteristics of all program design segment types
and the ability to create new types of segments;

« Ability to include input from alternate files;

- Automatic generation of table of contents and other such tables (e.g., table of
figures, table of tables);

Chapter 1: Introduction 3

- Automatic generation of document indexes in various forms.

1.3 Document Styles and the PDL/81 Data Base

The document styles which are available at an installation reside in the PDL/81
“data base”. The form of the data base depends on the particular host operating
system. The particular style to be used in a PDL/81 run is specified as an option
when PDL/81 is invoked.

1.4 Related Publications
Other publications relating to the use of PDL/81 are:

« PDL/81 Introduction and Invocation Guide — a guide to invoking PDL/81
under various operating environments

« PDL/81 Design Language Reference Guide — a guide to using PDL/81 for
producing general-purpose software design documents PDL/81 Document
Language Reference Guide — a guide to using PDL/81 for producing various
documents such as manuals and reports

« PDL/81 Format Designers Guide — A guide to developing new types of
PDL/81 design and document styles

- PDL/81 Installation Guide — a guide to installing PDL/81 under the various
supported operating systems.

1.5 A Note to the Reader

This manual describes the distributed ada document style which is intended to be
the standard style for formatting program designs to be implemented in the Ada
programming language. Two sample program designs are presented in Section
C.1 and Section C.2.

If you don’t like the results of this style, you may desire to modify the data
base. Simple modifications can generally be accomplished after an examination of
various data base entries. Extensive modifications, and the development of en-
tirely new design styles, will require reference to the PDL/81 Format Designers
Guide.

The ada style should be considered as an example of the kind of design tool
which may be defined with PDL/81. For any particular project, it may be desirable
to tailor a specific definitions file by removing many of the options which are de-
scribed here.

2. General Information

This chapter discusses various aspects of the PDL/81 ada design style which are
of general interest. It includes information on the form of a design, overall opera-
tion of the processor, and the syntax of PDL/81 commands.

This chapter does not discuss how to invoke the PDL/81 processor under the
various supported operating systems. Invocation is discussed in the PDL/81 In-
troduction and Invocation Guide.

2.1 Format of a Design

The PDL/81 ada style accepts as input a series of source lines and produces a de-
sign document. The document can be formatted for printing on different types of
output devices and different paper sizes.

Two sample designs appear as Section C.1 and Section C.2. The design docu-
ment is composed of several major sections:

1. Front matter
2. Design body
3. Reports

4. Final page

which are now briefly described.

2.1.1 Front Matter

This is the first part of the design document. It begins with a title page which
identifies the particular design. Primary information for this page comes from the
title command (see Section 10.1) and the date command (see Section 10.2).

The title page is followed by the table of contents for the design. The table of
contents lists all of the sections and subsections which make up the design along
with their corresponding page numbers.

6 PDL/81 Ada Design Language Reference Guide

2.1.2 Design Body

The design body presents the actual data definitions, procedure definitions, and
textual information of the design. This section is composed of various kinds of seg-
ments which may be structured into packages (see Chapter 3). The segment types
are:

« Text Segments: which represent arbitrary commentary (see Chapter 4).

« Specification Segments: which allow definition of procedures, functions,
tasks, task entries, records, and data which are assumed to be global to a
package (see Chapter 7).

- Data Segments: which allow definition of data items that are assumed to be
local to a package (see Section 6.3).

« Procedure Segments: which define procedures which are not defined in
specification segments and supply the bodies of all procedures (see Chapter
8).

« Function Segments: which define functions which are not defined in
specification segments and supply the bodies of all functions (see Chapter 8).

« Task Body Segments: which supply the bodies of all tasks (see Chapter 8).
Task entry points are defined in specification segments.

Procedure segments, function segments, and task body segments are collectively
referred to as flow segments.

2.1.3 Reports

The processor can be instructed to produce several reports (see Chapter 12) which
provide information about the content and internal structure of the design. These
reports are particularly useful in understanding a design. The possible reports
are:

» Reference Trees: which shows all of the procedure, function, and task refer-
ences arranged in the form of a calling tree. There will be several trees if
there are several flow roots in the design. Recursive references will be indi-
cated. Reference trees are further described in Section 12.1.

- Data Index: which lists each data item in alphabetic order and shows the
points in the design where each is referenced. The data index is further de-
scribed in Section 12.2.

« Flow Segment Index: which lists each procedure, function, task, and entry
point in alphabetic order and shows the points in the design where each is
referenced. The flow segment index is further described in Section 12.3.

« Overly Complex Segment Index: which lists each segment which has a cyclo-
matic complexity value greater than the selected maximum (see Section 11.1
for a discussion of complexity measurement and Section 12.4 for a discussion
of the report.

« Requirements Index: which lists each declared requirement number and the
segments that address that requirement (see Section 11.2 for a discussion of
requirements tracking and Section 12.5 for a discussion of the report.

Chapter 2: General Information 7

- Calls-in-Context Index: which shows each procedure, function, or entry pint
definition along with each line that calls it (see Section 11.3 for a discussion
of calls-in-context and Section 12.6 for a discussion of the report.

2.1.4 Final Page

This is the last page of the design document. Besides confirming that the design
was completely processed, this page displays a number of statistics about the pro-
cessing.

2.2 Invocation of PDL/81

The manner of invoking PDL/81 depends on the particular operating system being
used. Invocation is discussed in the PDL/81 Introduction and Invocation Guide.

2.3 Overall Operation

PDL/81 processes a design in two passes. During the first pass, the source is read,
page breaks are determined, and a dictionary of data item and segment names is
constructed. During the second pass, the source is reread, references to data items
and segments are detected, and the design document is formatted. During both
passes, progress is noted by displaying the current page number and processing
phase on a file (which will usually be the controlling terminal).

2.4 Input Format

Input to PDL/81 consists of a sequence of source lines. Each line is terminated by
a newline character. This section describes the interpretation of various special
characters and character sequences within source lines. The only ASCII control
codes allowed on an input line are “tab” and “newline”.

2.4.1 Tab Expansion on Input

ASCII tab characters are allowed on input lines. Each tab will be replaced by
enough blanks to position the immediately following character to the next input
tab stop. Input tab stops are set at columns 1, 9, 17,

2.4.2 Continuation of Input Lines
Any input line may be continued in one of two ways:

« The sequence “\<newline>" results in deletion of both characters, thus caus-
ing the following line to be considered part of the current line. The character
“N” is known as the escape character and has additional uses as described in
Section 2.4.3.

« The sequence “/<newline>" will be replaced by a single blank, thus causing
the current and following lines to be treated as a single line with their con-
tents separated by a blank. The character “/” is known as the continue char-
acter. It has special significance only when it immediately precedes a new-
line character — in any other context, it is just another character.

8 PDL/81 Ada Design Language Reference Guide

2.4.3 Special Characters

The character sequence “#{” is used to introduce a text function as described in
Chapter 9. The sequence should not appear in any other context, as the results
will be unexpected. If it is necessary to use the sequence for some other purpose,
the “#” should be protected by an escape character as in “\#{".

The special sequence “*” will be replaced by the so-called bullet character
(bullet) in the printed output. The form of this special character depends greatly
on the output device being used.

The escape character followed by a space is known as the unpaddable space. It
will be replaced by a single space in the printed output, but will not be considered
to mark a word break during processing.

2.5 Command Lines

If the first character of a line is a “%”, the line is known as a command line. Com-
mand lines contain commands which direct various types of processing or provide
various information to PDL/81.

When a command line is encountered, white space (blanks and tabs) following
the “%” is skipped. If a newline is encountered, the command line is ignored. If an
asterisk (“*”) is encountered, the line is considered to be a comment command, the
rest of the line is skipped, and the whole line is ignored.

If anything else is encountered, it is assumed to start a command name which
extends to the first blank, tab, or newline. After skipping any white space, the re-
mainder, if any, of the line is considered to be the command argument. Thus, for
example.

%Wlitle This is a Sanple
is a command line with a command name of “Title” and a command argument of

“This is a Sample”.

The case (upper, lower, mixed) of a command name is immaterial. Thus, for
example, “Title”, “TITLE”, “title”, or even “tiTIE” all represent the same command
name.

2.6 Including Alternate Source Files

At any point in the design source, input may be switched to another source file by
the command

% nclude file

where file is the name of the file to be included. Files included with an %Include
command may contain %Include commands.

Chapter 2: General Information 9

2.7 Design Body Conventions

As outlined in Section 2.1.2, the design body is composed of a number of segments.
There are no restrictions on the ordering of segments. The only restriction on the
number of segments is that imposed by the amount of memory available to
PDL/81 while processing a design.

2.7.1 Segment Delimiting

A segment is introduced by one of the segment commands described elsewhere in
this manual. These commands are:

%Text or %T start a text segment (Chapter 4)

%TextF or %TF start a formatted text segment (Chapter 4)
%SPEC start a specification segment (Chapter 7)
%Data or %D start a data segment (Section 6.3)
%Function or %F start a function segment (Chapter 8)

%Procedure or %P start a procedure segment (Chapter 8)
%Taskbody or %Task start a task body segment (Chapter 8)

A segment is terminated by the next occurrence of a segment command, a
%Package command (see Chapter 3), or the end of the design source.

2.7.2 Display of Segments

Each segment can occupy one or more pages. However, experience has shown that
designs are generally much more readable and understandable if each segment is
limited to a single page.

Each segment will be enclosed in a box composed of characters specific to the
type of segment. The various characters are:
text segment
data segment
function segment

T T O #®

procedure segment
T task body segment

If the body of a segment is empty, the box will contain a generated notice that the
segment was intentionally left blank.

2.7.3 Comment Strings

The descriptions of many of the segments refer to syntactic constructs known as
comment strings which are used as delimiters in certain contexts (e.g., to separate
a procedure name from its “arguments”).

Initially, there are two comment strings defined — the Ada comment delimiter
“- - the left parenthesis (“(”). Replacement or additional comment strings may be
defined by the command

10 PDL/81 Ada Design Language Reference Guide

%CSt ri ng [string]

where string is one or two non-blank printing characters other than letters or dig-
its. No two comment strings may begin with the same first character. If string is
absent, all comment strings will be deleted.

3. Packages

A design may be broken into various sections by use of commands of the form

UPACKAGE text

where text is any sequence of characters to be used as the title for the package.
For compatibility with previous versions of the ada style, the commands

%UGROUP text

or

%5 t ext

may be used instead of %PACKAGE.

In the design document, each package will be prefaced with a page containing
the title of the package centered and boxed. The title will also appear as a subtitle
on each design page within the package and will be placed in the table of contents
for the design.

Examples of package declarations are

%ackage Pass One Processing
%%ackage |Input Editing Phase

A package is terminated by the next “Package” command or by the end of the de-
sign.

-11 -

4. Text Segments

Text segments are used to place blocks of commentary into a design. They are fre-
guently used to supply such material as introductory information, table layouts,
and record layouts. There are two types of text segments — unformatted and for-
matted. Only commands specific to text segments are described in this chapter.
See Chapter 9 and Chapter 5 for a discussion of other functions and commands
which are useful in text segments.

4.1 Unformatted Text Segments
An unformatted text segment is introduced by the command

9 ext t ext

or

o t ext

where text is any sequence of characters to be used as the title of the segment.
The title will be displayed at the top of the segment page and will be entered in
the table of contents.

The lines comprising the body of an unformatted text segment are simply in-
put and printed as is. No automatic formatting will be performed except that lines
which are too long to fit into the segment box will be split at word boundaries and
printed on two or more lines. White space on input lines is kept and blank input
lines will result in blank output lines.

Examples of commands to introduce an unformatted text segment are:

Yext Introduction to Position Mnitoring Mdule
ol O her Docunents Relating to this Subsystem

-13 -

14 PDL/81 Ada Design Language Reference Guide

4.2 Formatted Text Segments
A formatted text segment is introduced by the command

9% ext F t ext

or

% F t ext

where text is any sequence of characters to be used as the title of the segment.
The title will be displayed at the top of the segment page and will be entered into
the table of contents.

The lines which comprise the segment are considered to be running text.
Words are collected, regardless of the input line boundaries, and are put into the
output line until a word does not fit. The output line is then printed and a new
output line is started. This action is known as “breaking” the line. A break is
forced by a blank input line and by the commands described in Section 4.2.1 and
Chapter 5. White space on input lines is kept and blank input lines result in
blank output lines.

Examples of commands introducing formatted text segments are:

%extF Standards Used in this Design
% F Qutline of Link-Level Protocols

4.2.1 Lists

W(ijthin formatted text segments, three types of lists may be automatically format-

ted:

bullet each list entry is prefixed by the bullet (bullet) character.

numbered each list entry is prefixed by an automatically generated number.

verb each list entry is prefixed by an arbitrary word or phrase. (This list is
an example of a verb list.)

The same general structure is used for generating each kind of list. This
structure, presented in the form of a numbered list, is:

1. alist start command specifying the type of the list

2. one or more list entries

3. a%LE (list end) command to mark the end of the list

Lists may be nested.
Each list will be automatically preceded and followed by a blank line.

Chapter 4: Text Segments 15

4.2.1.1 Bullet Lists
A bullet list is introduced by the command

%BL

The text for the list entries should follow, separated from each other by a single
blank line. The list is closed by the command

%.E

which should not be preceded by a blank line.

4.2.1.2 Numbered Lists
A numbered list is introduced by the command

OANL

The text for the list entries should follow, separated from each other by a single
blank line. The list is closed by the command

%.E

which should not be preceded by a blank line.

4.2.1.3 Verb Lists
A verb list is introduced by the command

%/L [indent]

where indent is a decimal integer which specifies the number of characters to in-
dent the text of the list items. In the absence of indent, a value of 16 will be used.

Each item in a verb list is introduced by the command

%/erb text

where text is the word or phrase to be displayed at the left margin. The text of the
list entry follows on succeeding lines.

16 PDL/81 Ada Design Language Reference Guide

The last entry in a verb list should be followed by the command

%.E

to close the list.

4.3 Switching Between Formatted and Unformatted Modes

The initial formatting mode (formatted or unformatted) for a text segment is de-
termined by the command which introduces that text segment. Within a text seg-
ment, either formatting mode may be established at any point by the commands

oFi ||

which establishes formatted mode and

%NoFi I |

which establishes unformatted mode.

5. General Formatting Commands

This chapter describes commands which relate to the general control of formatting
within a segment. These commands are most often used in text segments (see
Chapter 4) but may be used in any kind of segment.

5.1 Vertical Spacing Commands
Blank lines may be inserted into a segment by the command

YSpace nunber

where number is a decimal integer giving the number of blank lines to insert. If
the given number of blank lines exceeds the number of available lines remaining
on the page, a new page is started instead. For example,

YSpace 3

would cause three blank lines to be inserted or would cause a page eject if there
were not at least three lines remaining on the page.

The command

%Need nunber

where number is a decimal integer, will cause a page eject if at least number lines
do not remain on the current page. If at least that many lines remain, the com-
mand has no effect. Thus,

%Need 5

will cause a new page to be started if fewer than five lines remain on the current
page.

-17 -

18 PDL/81 Ada Design Language Reference Guide

The command

%Ej ect

will cause a new page to be started.

5.2 Heading Commands

The heading commands allow descriptive headings to be placed within a segment.
When mentioned below, the terms “centered” and “flush left” are to be taken as
being relative to the textual display area within the segment box.

The command

%vhj or Headi ng t ext

will skip two lines; print text centered, underscored, and capitalized; and skip two
lines.

The command

%-eadi ng t ext

will skip two lines; print text flush left, underscored, and capitalized; and skip one
line.

The command

%SubHeadi ng t ext

will skip one line; print text flush left and underscored; and skip one line.

6. Data Item Declaration

PDL/81 allows the designer to declare certain items known as data items. Refer-
ences to these items within flow segments will be collected and may be displayed
in the data item index (see Section 12.2).

6.1 Data ltems

Within data segments (see Section 6.3), specification segments (Chapter 7), and
flow segments (see Chapter 8), tokens consisting of letters, digits, and certain spe-
cial characters are considered to be potential data items. A potential data item
will be considered to be an actual data item if it is defined as such in an implicit
(see Section 6.2) or explicit (see Section 6.3) data declaration.

Lines which begin (possibly after some leading white space) with a comment
string (see Section 2.7.3) will not be examined for potential data items.

The special characters which may be part of a potential data item are initially
“$”, “#”, “@", and “_". Thus, in the line

X = a$l+bb*cc
the potential data items are
x a$l bb cc
The case (upper, lower, mixed) of letters in names of potential data items is imma-

terial. Thus, for example, “test”, “Test”, “TEST”, and even “tEst” all represent the
same item.

The set of these special characters may be modified by the command

%OSChar char

where char is a non-blank, non-alphanumeric character to be added to the set of
data item special characters. If char is absent, the set is made empty. All uses of
the “DSChar” command should precede the first segment.

-19-

20 PDL/81 Ada Design Language Reference Guide

As an example, the special characters “%” and “!” can be added to the set by
the commands

o2OSChar %
o2®OSChar !

and the set can be defined to contain only the character “$” by

o2®OSChar
%OSChar $

6.2 Implicit Data Item Declaration
When a potential data item is encountered in a flow segment, it will be declared as
an implicit data item if

1. it contains a data character;

2. itis longer than one character; and

3. itis not declared elsewhere in the design as an explicit data item.

Initially, the underscore (“_") is the only data character. New data characters may
be added to the set of data characters by the command

%OChar char

where char is a non-blank, non-alphanumeric character to be added. If char is ab-
sent, the set is made empty. All uses of the “DChar” command should precede the
first segment.

For example, the characters “-” and “$” can be added to the set of data charac-
ters by the commands

o®Char -
%OChar $

and the character “!I” can be defined as the only data character by

o®Char
o®Char I

For compatibility with older versions, the command

%bPat aChar char

establishes the single character char as the only data character. The preferred
method of changing data characters is to use the “DChar” described above.

Chapter 6: Data Item Declaration 21

6.3 Explicit Data Item Declaration (Data Segments)

Data items are explicitly defined in data segments and in specification segments. A
data segment is introduced by the command

%Pat a t ext

or

%D t ext

where text is a sequence of characters to be used as the title of the data segment.
The title will be displayed at the top of the segment page and will be entered in
the table of contents. Note that the “Data” or “D” commands do not, themselves,
declare data items — they introduce segments in which data items are declared.
Examples of these commands are:

o%Pat a Formats for Master File Records
%) M scel | aneous Data Definitions

The actual data definitions occur in the body of a data segment. Lines beginning
with a comment string (see Section 2.7.3) are considered to be comments and are
not scanned for declarations. White space on source lines is kept and blank input
lines will result in blank output lines.

6.3.1 Normal Declaration Mode

In the normal mode of data item declaration, the first potential data item in each
line of the body is declared to be an actual data item. Anything following the data
item on the line is taken as commentary. Thus, in the line

CType is the type of the conmmand

“CType” will be declared to be a data item.

6.3.2 Special Declaration Mode

In the special declaration mode, a potential data item is declared as an actual
data item only if it contains a data character. If the data character is the first
character of the potential data item, it is not included as part of the name of the
actual data item.

At the start of each data segment, the normal declaration mode is in effect.
The special declaration mode can be established for that segment by the command

%sSDivbde

and the normal declaration mode can be re-established by the command

22 PDL/81 Ada Design Language Reference Guide

%NoSDMbde

As an example, consider the line

Items _cl, file_count, and _open_count are counters
In the special declaration mode, the actual data items will be

cl file_count open_count

As another example, the lines

*********************************//*******************

* * * *
* code * _count * record_text *
* * * *

*********************************//*******************

will declare “code”, “count”, and “record_text” to be actual data items.

7. Specification Segments

A specification segment may be used to group definitions of procedures, functions,
tasks, entry points, and data. Typically, these are thought of as global even
though the PDL/81 processor does not make such a distinction for reference pur-
poses.

A specification segment is introduced by the command

%Spec t ext

where text is a sequence of characters to use as the title of the segment. The title
will be used to label the segment page in the design and will appear in the table of
contents. Some examples are

%Spec Background Tasks
%Spec File Manipul ati on Functions

7.1 Defining Procedures and Functions
A procedure is defined by a procedure statement which has the form

PROCEDURE nane (argunent-list)
and a function is defined by a function statement which has the form
FUNCTI ON name (argument-list) RETURNS return-item
Note that these statements only define names and arguments — procedure bodies

are defined in procedure segments (Chapter 8) and function bodies are defined in
function segments (Chapter 8).

Some examples are

-23-

24 PDL/81 Ada Design Language Reference Guide

PROCEDURE open file (file nane)

procedure term nate processing

Procedure send initial nessage(nessage text, \
nessage cl ass, nessage code)

Function normalize(value) returns normalized val ue
FUNCTI ON decrypt password (text, key) returns \
decrypted string

7.2 Defining Tasks
Tasks are defined in a specification segment by use of the TASK construct which
has the form

TASK task nane IS
first entry definition
second entry definition

END TASK
The “1S” token is optional. If it is not given, the PDL/81 processor will supply it in
the output listing. Each task entry definition has the form

entry name (argunent-list)
Some examples are

TASK sensor poll IS
END TASK

TASK status nonitor
monitor it (detector code, detector state)
END TASK

task tine stanper
time stanmp(type, val ue)
change tinme (new tine)
end task

7.3 Defining Data

Data may be defined in a specification segment in the same way it is defined in a
data segment (Section 6.3). Both normal and special declaration modes may be
used. In addition, data records may be declared by a construct of the form

RECORD r ecor d- name
first data item
second data item

END RECORD

An example is

Chapter 7: Specification Segments 25

RECORD message
type
| engt h
t ext

END RECORD

8. Flow Segments

A flow segment presents, in a program-like form, the procedural flow of a portion
of a design. In the ada design style, the three types of flow segments are:

« Procedure segments,

« Function segments, and

» Task body segments.

All of these have essentially the same form and differ mainly in the particular
command that is used to introduce them.

8.1 Flow Segment Commands
A procedure segment is introduced by the command

%PROCEDURE t ext

or

o t ext

A function segment is introduced by the command

%-UNCTI ON text

or

-27 -

28 PDL/81 Ada Design Language Reference Guide

o t ext

A task body segment is introduced by the command

%rASKBODY text

or

YTASK text

In each case, text is a sequence of characters which represents the name of the
segment. The name will appear at the top of the segment page. That portion of
the name up to the first comment string (see Section 2.7.3) will be placed in the ta-
ble of contents and will be saved in a dictionary for indexing purposes. In saving
the name in the dictionary, leading and trailing blanks are removed and each se-
guence of imbedded blanks is collapsed into a single blank. Some examples are:

Command Saved Name
%°r ocedure System Start System Start
9 Install in Data Base (Name, Type) Install in Data Base
9% Search Dictionary (Name) Returns entry Search Dictionary
9%ask Mbnitor Sensors Monitor Sensors

Note that this definition implies that there is no real difference between the three
types of flow segment. In fact, the PDL/81 processor treats them very much alike.
For consistency, however, argument lists and return items should be written as
shown in the examples above.

8.2 Flow Segment Body

The body of a flow segment is composed of one or more lines. These lines are
known as statements to emphasize the relation between a flow segment and a pro-
cedure in a programming language.

A statement may start anywhere on a line. PDL/81 will correctly format and
indent each statement on output and may supply various forms of visual enhance-
ment to the printed line. Leading blanks will be removed and each sequence of
imbedded blanks will be replaced by a single blank. Blank input lines will be ig-
nored. Statements which are too wide to fit in the segment box will be automati-
cally continued when printed.

This automatic formatting means that there is no need for the designer to do
any special formatting of the flow segment input lines. In fact, each statement is
normally just typed flush left on the input line and layout is left to PDL/81.

Chapter 8: Flow Segments 29

With the exception of the special statements discussed in Section 8.6, the con-
tents of a statement may be anything desired. Some examples are:

Count = Count + 1

I ncrement Count

Bunp Count to reflect/
the record just processed

Note that, since “/” is the continue character (see Section 2.4.2), the last two lines
of this example are equivalent to:

Bunp Count to reflect the record just processed

8.3 Reference Recognition

Each statement in a flow segment, except for a statement which begins with a
comment string (see Section 2.7.3), will be scanned to see if it is the name of a flow
segment. If a statement begins with a keyword (see Section 8.6), the scan begins
following the keyword and any subsequent secondary keywords. The scanning
stops at the first comment string.

In any match, leading and trailing blanks are removed, each sequence of
imbedded blanks is replaced by a single blank, and the case (upper, lower, mixed)
of all letters is ignored.

Lines beginning with comment strings in data segments and flow segment are
normally not scanned for data item definitions or references or for flow segment
references. Scanning can be specified in this case by the command

%CDat a

and may be inhibited by the command

%NoCDat a

If used, these commands should appear before the first segment.

8.4 Labels

It is occasionally desirable to place labels in a design. If the first non-blank char-
acter in a statement is a “<” and a “>” is encountered before the next blank or the
end of the statement, that statement is considered to be a label. Note that this
loosely supports Ada labels of the form <<i denti fi er >>. The statement will be
printed flush with the left margin so that it will stand out. Anything following the
label on the same line will be treated as commentary. Some examples of labels
are:

30 PDL/81 Ada Design Language Reference Guide

<<Mai nSear chLoop>>
<<END_OF_FI LE>>
<<ReBooot >>

8.5 Block Names

It is occasionally desirable to identify a particular block or loop for purposes of ref-
erence. If a colon (*:”) is encountered before the first blank in a statement, that
statement is considered to be a block name. The statement will be printed flush
with the left margin so that it will stand out. Anything following the name on the
same line will be treated as commentary. Some examples of block names are:

Sear ch:
i nner:
ReCycl er:

8.6 Special Statements

The so-called special statements comprise the flow-of-control statements in the
PDL/81 procedural language. This section describes each of the special
statements.

8.6.1 Keywords and Secondary Keywords

Each special statement begins with a keyword followed by a blank or the end of
the input line. The keywords are

I F ELSEI F ELSE END I F
VWHI LE FOR LOOP END LOOP
BEG N END CASE END CASE
SELECT END SELECT ACCEPT R

EXIT G&Ooro RETURN DELAY
TERM NATE RAI SE ABORT EXCEPTI ON

The particular keyword which starts a statement determines the indentation level
for that and subsequent statements. A word is considered to be a keyword only
when it is the first word of a statement.

There is also a so-called secondary keyword which is recognized as such only
when immediately following a keyword or a secondary keyword. The secondary
keyword is

NOT

The case (upper, lower, mixed) of keywords and secondary keywords is ignored.

The keywords and secondary keywords discussed above are those defined in
the ada style as distributed. New project-wide keywords and secondary keywords
may be added by modifying the style file.

Chapter 8: Flow Segments 31

8.6.1.1 Keyword Enhancement

The form in which a keyword or secondary keyword is printed depends on the use
of various commands described in this section. These commands, if used, should
appear before the first segment. Initially, keywords and secondary keywords are
printed in upper case regardless of the case in which they are entered.

The command

% .Case

causes keywords and secondary keywords to be printed in lower case regardless of
the case in which they are entered.

The command

YsCase

causes keywords and secondary keywords to be printed in the same case in which
they were entered.

For compatibility with older versions, the command

%NolLCase

also specifies that keywords are to be printed in the same case in which they are
entered. The preferred method of accomplishing this is to use the “SCase” com-
mand described above.

The command

%JCase

causes keywords and secondary keywords to be printed in upper case regardless of
the case in which they were entered. This is the default setting.

The command

%JScor e

causes each keyword and secondary keyword to be underscored when printed.
The command

32 PDL/81 Ada Design Language Reference Guide

%MNoUScor e

specifies that each keyword and secondary keyword is not to be underscored when
printed. This is the default setting.

Flexibility in font selection is provided by the command

%KKWFont n

where n is a font number:

0 base font (no special treatment except for possible conversion to upper
case or lower case under control of the %UCASE or %LCASE com-
mands).

underscored (same effect as obtained by the %USCORE command).
bold face (only if supported by your installation on the selected device).

8.6.2 Special Statement Display

The PDL/81 processor tries to display special statements in a canonic form regard-
less of how they were input. For example,

VHI LE sone condition
will be displayed as

VWH LE sonme condition LOOP
as will

whil e some condition | oop

8.6.3 The IF Construct

The IF construct consists of the keywords IF, ELSEIF, ELSE, and END IF. END
IF may also be written as ENDIF. In its simplest form, it can be written as:

I F conditi on THEN
sequence
END | F

which implies that the statements comprising “sequence” are only to be executed
if “condition” is true.

The basic form can be expanded by adding an alternate as in:

Chapter 8: Flow Segments 33

I F condition THEN
sequence-1
ELSE
sequence- 2
END | F

which implies that “sequence-1” is to be executed if “condition” is true and that
“sequence-2” is to be executed if “condition” is false.

Multiple IF constructs can be nested as in:

| F condition-1 THEN
sequence-1
ELSE
I F condition-2 END
sequence- 2
ELSE
sequence-3
ENDI F
END | F

Since nested IF constructs are quite common, an alternate form can be used as in:

| F condition-1 THEN
sequence-1

ELSEI F condi ti on-2 THEN
sequence- 2

ELSE
sequence-3

END | F

Thus, the general form of the IF construct is

1. anlF

2. zeroor more ELSEIF's
3. zeroor one ELSE

4. an END IF

The THEN in the IF and ELSEIF statements is optional and will be supplied by
the processor if it is missing.

8.6.4 The LOOP Constructs

The LOOP construct consists of the keywords LOOP, WHILE, FOR, and END
LOOP. END LOOP may also be written as ENDLOOP.

The basic loop construct has the form
LOOP
statenments. ..
END LOOP

and implies iteration until some condition causes exit from the loop.

34 PDL/81 Ada Design Language Reference Guide

The WHILE construct has the form

VWH LE condi ti on LOOP
statenents. ..
END LOOP

and implies iteration as long as the condition is true.
The FOR construct has the form

FOR sel ector LOOP
statenents. . .
END LOOP

and implies iteration while selecting items or values from some list or sequence.
The actual selector can be chosen to be as meaningful as possible to the designer
and reader. Examples are:

FOR each table entry LOOP

FOR each elenment in the Positions array LOOP

FOR all nodes in the tree LOOP

FOR all "interesting"” entries in the dictionary LOOP

In the WHILE and FOR constructs, the LOOP keyword is optional and will be
supplied by the processor if it is missing.

8.6.5 The EXIT Statement

The EXIT statement is used to indicate that control should pass to the statement
immediately following the END LOOP of the current LOOP construct, thus caus-
ing premature exit from the loop. It might be used in the following context:

VWH LE source input remains LOOP
process next source line
I F dynamic menory is full THEN
EXIT
END | F
END LOOP

An alternate form of the EXIT statement is
EXIT WHEN condi ti on
which can make the design more concise as in:
VWH LE source input remains LOOP
process next source line
EXIT WHEN dynami ¢ nenory i s exhausted
END LOOP
When LOOP constructs are nested, it may sometimes be necessary to indicate a
premature exit from an outer loop. This is most easily shown by naming (Section
8.5) the outer loop and writing using the full form of the statement which is

EXIT [l oop-nane] [WHEN condition]

Chapter 8: Flow Segments 35

8.6.6 The CASE Construct

The CASE construct consists of the CASE, WHEN, and END CASE keywords.
END CASE may be written as ENDCASE. The CASE construct is used to select
one of a group of actions according to a given selection criterion.

CASE selector IS
VWHEN choi ce-1 =>
sequence-1
VWHEN choi ce-2 =>
sequence- 2

V\HEN. ch0| ce-n =>
sequence-n
END CASE
The IS keyword and the “=>" delimiter are optional and will be supplied by the
processor if they are missing.
Examples of CASE statements are
CASE of command name | S

CASE switch setting IS
CASE error nessage nunber 1S

8.6.7 The BEGIN Construct
The BEGIN construct consists of the BEGIN and END keywords and has the form
BEG N

statenents. ..
END

8.6.8 The RETURN Statement

Normally, a flow segment will “return” to its “caller” when control reaches the end
of the segment. However, the RETURN statement can be used to indicate prema-
ture exit from a flow segment. Some examples of RETURN statements are:

RETURN
RETURN Synbol ' s Val ue
RETURN "I 11 egal Reference"

8.6.9 The ACCEPT Construct

This construct has the form
ACCEPT entry definition DO
statenents. ..
END

The DO is optional and will be supplied by the processor if it is missing.

36 PDL/81 Ada Design Language Reference Guide

8.6.10 The SELECT Construct
The SELECT construct has the form

SELECT t ext
[WHEN condition =>]
statenments. ..
[OR[WHEN condition =>]
statenments. ..

[ELSE]
statenents. ..
END SELECT

The => delimiter is optional and will be supplied by the processor if it is missing.

8.6.11 The GOTO Statement
The GOTO statement has the form

GOT0 | abel nane

See Section 8.4 for a discussion of labels.

8.6.12 The EXCEPTION Construct

Exception handlers may be declared with the EXCEPTION construct. For ease of
visual recognition, the processor draws a horizontal line across the segment at the
start of the construct. Thus, an exception construct should only appear at the end
of a segment. The construct has the form

EXCEPTI ON
VWHEN exception nane =>
statenments. ..
VWHEN excepti on nanme =>
statenments. ..

The => delimiter is optional and will be supplied by the processor if it is missing.

8.6.13 Miscellaneous Statements

The keywords ABORT, DELAY, RAISE, and TERMINATE, support the Ada state-
ments of the same form. Examples are

ABORT all pendi ng tasks
DELAY ten m nutes

RAI SE overfl ow

TERM NATE

9. Text Functions

Text functions are used to insert special information into a design or to perform
some kind of textual modification. They are most commonly used in text segments
but may appear in any type of segment.

The general form of a text function invocation is

#{ nanme[; argunent ; argunent; ...]}

where name is the name of the text function and the arguments depend upon the
requirements of the particular function. If an argument to a text function contains
any of

{ }

each must be preceded by an escape character (“\”) as described in Section 2.4.3.
The entire text function invocation must appear on a single (possibly continued)
source line.

9.1 The DATE Text Function
The date on which the current run of PDL/81 was started may be obtained by

#{ dat e}

which will be replaced by the date in the same form as it appears at the top of
each page of the design. For example, the line

The current date is #{date}
will be printed as

The current date is 6 Sep 86

-37-

38 PDL/81 Ada Design Language Reference Guide

9.2 Underscoring of Text

Keywords and secondary keywords in flow segments may be automatically under-
scored by use of the “UScore” command as described in Section 8.6.1.1. Other text
may be underscored by

#{us;text}

which causes each non-blank character in “text” to be underscored and by

#{uc; text}

which causes each character in “text” to be underscored. For example,
this #{us;is under}scored and #{uc;so is this}

will print as
this ulineis ulineunderscored and ulineso is this

If bold face output is supported at your installation on the selected device, the text
function

#{ bf ; text}

will print text in bold face,

#{bfu; text}

will print text in bold face with non-blank characters underscored, and

#{ bf uc; text}

will print text in bold face with all characters underscored.

9.3 Tags and References

A tag is a symbol which can be used to mark a particular point in a design and is
declared by

Chapter 9: Text Functions 39

%ag synbol

where symbol is the name of the tag. The output page number corresponding to
the location of the tag will be associated with the tag and may be retrieved by the
text function

#{ref; synbol }

For example, if the command
%ag test

appeared at a point which was to be printed on page five of the design document,
the line

See page #{ref;test} for a description.
would print as

See page 5 for a description.

10. Listing Control Commands

This chapter describes a number of commands which are used to control various
aspects of the listing of the design document.

10.1 Specifying Design Titles
The title of the design may be specified by commands of the form

%ditle t ext

where text is any sequence of characters. Several “Title” commands may be used
in a single design. The text of these commands will be placed, centered and boxed,
double spaced, with leading and trailing blanks removed, on the cover page of the
design document. In addition, the text of the first “Title” command will be capital-
ized and placed at the top of each design page unless a “Ptitle” (Section 10.1.1)
command is used.

Some examples are:

%Wlitle Fortran Conpiler: Pass 3
0uTitl e Tree Transformati on Phase

The “Title” commands should appear before the first segment.

10.1.1 Defining a Page Head
The command

%Titl e t ext

will cause the text to be used as the running page head for the design. If this is
not used, the running head will be the text of the first %Title command.

-41 -

42 PDL/81 Ada Design Language Reference Guide

10.2 Specifying the Listing Date

Normally, the date on which the current PDL/81 run was started is the date dis-
played on the design title page and at the top of the other pages of the design and
is the date returned by the “date” text function (see Section 9.1). The date may be
changed by the command

%at e string

where the first nine characters of string will be used as the date. No checking is
performed on this substitute date and it will be used as is in place of the system
date.

Some examples are:
Yate 6 May 91
%ate 6.5.91

%at e 5/ 6/91
%at e 91/ 06/ 05

If used, the “Date” command should appear before the first segment.

10.3 Specifying Security Banners

A security banner will be placed at the top and bottom of each output page by the
command

YSecurity classification

where classification is a word or phrase specifying the security classification of the
design document. The command

%°r oj ect text

specifies “text” to be a project identification word or phrase to be included in the
security banner. The “Project” command will be ignored in the absence of a
“%Security” command. Both of these commands, if used, should appear before the
first segment.

In addition to the security classification and optional project name, each secu-
rity banner will contain a sequential sheet number for document control purposes.
These numbers start at “one” for the title page and are incremented by one for
each sheet printed. They are independent of the page numbers assigned by
PDL/81 for reference purposes. The last page of the design will contain a count of
the total number of sheets printed.

As an example, the security banners which appear on the sample design at the
end of this manual were specified by

Chapter 10: Listing Control Commands 43

YSecurity UNCLASSI FI ED
%°r 0j ect PDL/ 81 SAMPLE DESI GN

10.3.1 Security Banner Style
The format of security banners may be changed to reflect various standards.

By default, banners will have the classification centered, the sheet number on
the right, and the project identification on the left. This mode is known as Secu-
rity Style O.

An alternate security style, 1, is the same as zero except that the sheet num-
ber will appear on the left and the project identification will appear on the right
on even numbered sheets. This is useful when printing duplexed designs.

The default security style may be changed by editing the style files. On a per-
document basis, the command

YSecStyl e nunber

where the number is one of the security styles (0 or 1) will set the security style in
a design.

10.4 Specifying “Special” Boxes

Experience has shown that designs are often printed on serial printers since such
printers are available with compressed type fonts which allow a full-width design
to be printed on 8-1/2 by 11 inch paper. These printers can be very slow, however,
when printing designs because of the large amount of white space which may ap-
pear between the end of a statement and the right edge of the segment box. The
command

%SBox

specifies that the right edge of all boxes is not to be printed. This usually results
in faster printing during the draft stage.

The command

%8No SBox

specifies that the right edge of all boxes is to be printed (the default case).

If either of these commands is used, it should appear prior to the first
segment.

44 PDL/81 Ada Design Language Reference Guide

10.5 Specifying Line Number Printing

The PDL/81 processor does not normally display source line numbers in the de-
sign document. This can be changed by the

%.NO

which causes source line numbers to appear to the right of the segment box. Not
all lines will be numbered. The display of line numbers may be stopped by

9NCLNO

10.6 Specifying Change Bars

Change bars, which appear on the right of segment boxes, can be displayed by the
command

o\VC char

where char is a single character to be used as the change bar. If char is absent,
the display of change bars is stopped.

For example, bracketing a section of changed design with
wC |
and
wC

will cause the character “]” to be used as a change bar for that section of the de-
sign.

11. Advanced Features

This chapter describes several advanced features of the ada style including:

« Cyclomatic complexity measurement and reporting;
- Automatic requirements tracking;

« Consistency checking;

« Flow figure enhancement;

« Maintaining design and code in the same file.

11.1 Complexity Analysis

This version supports a form of cyclomatic complexity measurement based on the
work of McCabe (A Complexity Measure, McCabe, Thomas J., IEEE Transactions
on Software Engineering, Vol SE-2, No 4, Dec 1976). It performs this measure-
ment by assigning a complexity value to certain keywords and secondary key-
words and summing these values for each flow segment — the higher the value,
the more complex the segment.

The complexity for each flow segment is printed on the segment’s output page
and in the Index of Flow Segments (Section 12.3). If a segment's complexity ex-
ceeds some specified value (6, by default), a warning message is issued on the
standard output and also appears on the segment’s output page. An index to such
overly complex segments is also printed (Section 12.4). Finally, various complexity
statistics are given on the summary page at the end of the design document.

11.1.1 Complexity Measurement Commands
The command

%Conpl exity [max]

specifies that complexity measurement is to be performed. If max is given, it
should be an integer constant giving the maximum allowable complexity to use in-
stead of the default value of 6.

- 45 -

46 PDL/81 Ada Design Language Reference Guide

The command

9%NoConpl exi ty

specifies that complexity measurement is not to be performed.

11.2 Automatic Requirements Tracking
Information about requirements are input by the command

%Req rl;r2;...:;rn

or

”R rl;r2;...:;rn

where each of the “rsub{i}” is a paragraph number of a requirement taken from
the controlling requirements document. When used with DOD-STD 2167, this
might be the Software Requirements Specification, DI-MCR-80025. The paragraph
numbers must have the general form of section and subsection identifiers sepa-
rated by decimal points. Such an identifier is a decimal integer optionally prefixed
by an alphabetic string. Examples are

3.5.6 3.9.6.2 R4. 2 4.6.R3.2

If a segment has associated requirements, the %R commands for the segment
must immediately follow the segment command (e.g., %SPEC, %P, %T). When a
segment which references requirements is printed, the associated requirements
will be displayed following the segment box.

11.2.1 Requirements Index

Optionally, an index of all requirements and their associated segments may be
printed. This is accomplished by using the command

%Rl ndex

If this action is established as the default during installation, it may be sup-
pressed by the command

YNoRI ndex

Chapter 11: Advanced Features 47

11.3 Consistency Checking

This release provides for consistency checking of segment references in a style
that is in the spirit of PDL/81. This is done by optionally producing a report
known as the Calls-In-Context List which shows each flow segment definition and
a listing of each line that calls that segment. Those calls which appear to be in-
consistent in number of arguments with the definition are flagged in the report.
For the purpose of this report, an argument list is assumed to be enclosed in
parentheses and arguments are separated by zero-level (with respect to parenthe-
ses and single and double quotation marks).

The report is requested by the command

%G C

If this action is established as the default during installation, it may be sup-
pressed by the command

%NoCi C

11.4 Flow Figure Enhancement
The command

UKW

specifies that the beginning and end of each flow figure will be connected by a se-
ries of a predetermined character. This may be turned off by the command

%8No Kw/

A default character and font may be established by editing the style and/or de-
vice definition files. The character and font may be chosen on a per-device basis so
that advantage may be taken of any specialized device characteristics (e.g., a line-
drawing character set).

The character and font may be set on a per-design basis by the command

UWKWC char[; font-expr]

If the font is not specified, the base font will be used.

48 PDL/81 Ada Design Language Reference Guide

11.5 Design and Code in the Same File

This new feature of PDL/81 allows maintaining both the design and the code for a
program in the same file. Code sequences, known as code segments, are intro-
duced by the command

% Code [fil e-nane]

where file-name is the name of a file to receive this code when code selection is en-
abled. If the file name is not specified, the code will be written to the file name
given in the last preceding %Code command that had a file name or, if none such
exist, to the file specified by the last preceding

% CodeFile [file-namne]

command. If no file name is in effect, code is written to the standard output.

During normal runs of PDL/81, code segments are not output; rather, they are
completely skipped. To cause code segment selection, invoke PDL/81 with the
“GetCode” number register set as in

pdl 81 -rGetCode file

As a final option, a normal design run of PDL/81 can be made with code seg-
ments being displayed in the output document. This is accomplished by invoking
PDL/81 with the “ShowCode” number register set as in

pdl 81 -rShowCode file

If this is done, code segments may not contain sequences which look like invoca-
tions of Format Design Language functions.

12. Processor Reports

Several types of reports can be printed which provide information about the con-
tent and structure of the design. The designer may choose the specific reports to
be included.

12.1 Segment Reference Trees

This report shows the nesting of flow segment references. A separate tree is
printed for each root segment, which is a flow segment that is not referenced by
any flow segment but which, itself, references at least one flow segment. If no root
segments are found, an arbitrary choice will be made and the resulting tree will
be printed.

When a segment is referenced recursively, its name is prefixed by an asterisk
and the recursion is not further traced.

The presence or absence of this report is controlled by the command

o%dr ee

which specifies that the report is to be printed, and by

9%NoTr ee

which specifies that the report is not to be printed.
A special abbreviated form of the trees can be selected by the command

YSTr ee

In these so-called short trees, only the first occurrence of each subtree is printed.
For subsequent occurrences, only the name of the first segment in the subtree will
be printed, prefixed with a minus sign (*-").

- 49 -

50 PDL/81 Ada Design Language Reference Guide

If any of these commands are used, they should appear before the first seg-
ment. The default setting is “STree”.

12.2 Data Iltem Index

The data item index shows each data item which was implicitly or explicitly de-
clared in the design and the locations in the design where each is referenced. The
code “DI” in the report indicates an explicitly defined data item while the code
“ID” indicates an implicitly defined item.

The data item index is requested by

%0l ndex

and is inhibited by

9%0NoDI ndex

If either of these commands is used, it should appear before the first segment. The
default setting is “DIndex”.

12.3 Flow Segment Index

The flow segment index lists all procedures, functions, tasks, and entry points in
the design. For each, it shows the location of its definition and the segment names
and locations of all references to it. The type of an item is indicated by a code:

P Procedure

GP Global Procedure

F Function

GF Global Function

SP Specification Segment
TK Task Body

EP Task Entry Point

Global procedures, global functions, and task entry points will have appeared in
specification segments. Global procedures and global functions may also appear
later in the design as segments. In that case, the definition page given in the in-
dex will be the page for the flow segment and not for the specification segment.

The flow segment index is requested by

Y8l ndex

and is inhibited by

Chapter 12: Processor Reports 51

9%0No S| ndex

If either of these commands is used, it should appear prior to the first segment.
The default setting is “SIndex”.

12.4 Index of Overly Complex Segments

If complexity measurement is enabled (Section 11.1), this index will be printed if
any segments excede the predefined maximum allowable complexity. By default,
this value is 6.

The index will show the complexity, type, location, and name of each segment
with too high a complexity.

12.5 Index to Requirements

If requirements tracking is enabled (Section 11.2), an index of requirements will
be printed. This index will be sorted by requirement and will show the location
and name of each segment that addresses that requirement.

12.6 Calls-in-Context List

When enabled (Section 11.3), this listing will show each procedure or function call
together with its definition. Inconsistent usage will be flagged.

A. Error Messages

This Appendix lists error messages which may be issued during processing of a
design. Error messages are displayed on the standard error file. If applicable, the
message will be prefixed with the name of the current input file and the current
line number within the file.

A.1 Non-Terminal Error Messages

The error messages described in this section do not cause termination of PDL/81
processing:

COMMAND INVALID OUTSIDE OF SEGMENT - this command may only
appear within a segment.

COMMAND INVALID OUTSIDE OF TEXT SEGMENT - this command
may only be used within a text segment.

DUPLICATE DATA ITEM: <item> — the named item has been previously
defined as a data item.

DUPLICATE ENTRY POINT: <name> — the given name has previously
been defined as the name of a flow segment or of an entry point.

DUPLICATE GLOBAL NAME: <name> — the given name has already been
declared as global in a Specification segment.

DUPLICATE NAME: <name> — the given name, which appears as the argu-
ment of a “Procedure” or “Function” command, has been previously defined
as the name of a flow segment.

DUPLICATE TAG: <name> — the given name has been previously defined in
another “Tag” command.

ENDING KEYWORD WITH NO OPEN FLOW FIGURE - an ending key-
word, such as ENDIF, was encountered but a flow figure is not open for it to
close.

FLOW FIGURE NOT CLOSED AT END OF SEGMENT - a flow figure is
still open when the end of a segment was encountered.

INVALID CHARACTER IN LINE - an input line contains an ASCII control
character other than “tab” or “newline”.

-53-

54 PDL/81 Ada Design Language Reference Guide

NAME MISSING — a name was not provided for a group or a segment.

REQUIREMENTS MUST BE PART OF A SEGMENT - A “Req” or “R” com-
mand has been encountered but it is precedes the first segment or immedi-
ately follows a “Package” statement.

SEGMENT TOO COMPLEX — the cyclomatic complexity of the segment is
greater than the allowable maximum.

TEXT OUTSIDE OF SEGMENT - a source line which was not a command
appeared outside of a segment. A generated “Segment” command will be in-
serted.

UNBALANCED BRACKETS - the number of unescaped left brackets is not
the same as the number of unescaped right brackets within a call on a text
function.

UNDEFINED TAG: <name> — the given name was referenced in a “Ref” text
function but did not occur also in a “Tag” command.

UNKNOWN COMMAND - a command name on a command line is not one
of those recognized by PDL/81.

A.2 Terminal Error Messages

The error messages described in this section cause immediate termination of
PDL/81 processing:

CAN'T OPEN TEMP FILE <file name> — the named temporary file cannot
be opened. This usually means that disk space is not available for the file or
that write access privileges are not available in the directory on which the
file is to be written.

CANNOT ALLOCATE DYNAMIC MEMORY FOR A BUFFER — Memory
was needed for an input/output buffer, but insufficient memory was avail-
able.

DYNAMIC MEMORY OVERFLOW (n) — all available dynamic memory is
allocated and more is needed. The character “n” indicates the particular
point in the processor where overflow was detected and is of interest only to
PDL/81 processor maintenance personnel.

MKTEMP: CANNOT GENERATE UNIQUE FILE NAME: <file name> —
Names of PDL/81 temporary files are generated by the internal PDL/81
“mktemp” function. This function can generate up to 26 unique names for
each invocation of PDL/81. Since names will be reused when possible, and
since PDL/81 deletes temporary files after they are closed, this message usu-
ally means that a large number of temporaries were left around following a
system crash. Examine the directory given in the message and delete the
abandoned temporaries.

SOURCE FILE NOT GIVEN - a source file was not specified when PDL/81
as invoked.

UNABLE TO OPEN FILE <file name> — the named file cannot be opened for
input. Possibly, it doesn't exist.

UNKNOWN DEVICE TYPE: <name> — the named device type was specified
by an invocation option but no such device is supported.

Appendix A: Error Messages 55

« UNKNOWN INVOCATION OPTION: <option>— the invocation line con-
tained an option which was not recognized by PDL/81.

A.3 Other Error Messages

The error messages described above are those which relate to processing designs
using the design document style. Other messages may be issued but they relate to
internal processing errors or system problems and should not appear when pro-
cessing designs. A more complete list of such messages may be found in the {it
PDL/81 Format Designers Guide}.

B. List of Commands

BL

CIC
Code
CodeFile
Complexity
CString
D

Data
Date
DChar
DIndex
DSChar
Eject
External
F

Fill
Function
G

Group
Heading
Include
KWFont
KWV

start a “bullet” list

enable calls-in-context index printing
start a Code segment

define a file to receive extracted code
enable complexity measurement
define comment strings

start a data segment

start a data segment

define date for printing purposes
define data characters

print a data item index

define data item special characters
begin a new page of output

start an external segment

start a function segment

switch to formatted mode in a text segment
start a function segment

start a group

start a group

print a second level heading

include source from an alternate file
specify font in which to print keywords
enable flow figure enhancement

-57-

58 PDL/81 Ada Design Language Reference Guide

KwWvVvC
LCase

Le

LNO
MajorHeading
MC

Need

NL
NoCIC
NoComplexity
NoDIndex
NoFill
NoKWV
NOLNO
NoRindex
NoSBox
NoSIndex
NoTree
NoUScore
=]

Project
Procedure
PTitle

R

Req
Rindex

S

SBox
SCase
SecStyle
Security
SIndex
Space
Spec
STree

define character for flow figure enhancement
print keywords in lower case

end a list

start display of source line numbers
print a first level heading

start or stop display of change bars
assure enough lines remain on a page
start a numbered list

disable calls-in-context index

disable complexity measurement

do not print data index

switch to unformatted mode in a text segment
disable flow figure enhancement

stop display of source line numbers
disable requirements index

do not print special boxes

do not print a flow segment index

do not print reference trees

do not underscore keywords

start a procedure segment

specify name of project for security banners
start a procedure segment

define running page title

specify requirements

specify requirements

enable requirements index

start a flow segment

use special segment boxes

print keywords in same case as entered
specify style of security banners
specify security classification of design
print flow segment index

space a given number of blank lines
start a specification segment

print short reference trees

Appendix B: List of Commands 59

SubHeading print a third level heading

T start an unformatted text segment
Tag define a tag

Task start a task body segment
TaskBody start a task body segment

Text start an unformatted text segment
TextF start a formatted text segment

TF start a formatted text segment
Title specify design titles

Tree print reference trees

UCase print keywords in upper case
UScore underscore keywords

Verb put a verb in a verb list

VL start a verb list

C. Sample PDL/81 Designs for Ada

This Appendix presents two short examples of PDL/81 designs for Ada. Each is
followed by a listing of the input source which resulted in the design listings.

C.1 lllustration of Features

This sample illustrates some of the more commonly used features of the ada style.
Note that security banners are used to illustrate the distributed format. Of
course, the format can be easily changed to suit the requirements of a particular
program.

C.1.1 Output of PDL/81 Processor

Beginning on the next page is the actual output of the PDL/81 processor when
presented with the source shown in Section C.1.2.

-61 -

62 PDL/81 Ada Design Language Reference Guide

RN R AR R R R R NN AR RN RN RN RRR RNy
|| ADA STYLE DEMO UNCLASSI FI ED SHEET 1 ||
CECEEEEEE ey

CAI NE, FARBER & GORDON, | NC.
1010 EAST UNI ON STREET
PASADENA, CALI FORNI A 91106

LR R S T O O O

PDL/ 81 Ada
Denonstration
21 Jan 92
PDL/ 81 X2.0.911

5500- PD8

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

khkkkhkkhkkhkkhkkhkkhkkkk

CECEEEEEEEETEr e ey e e e e e e e e e e e e e e e e et e e e e e e e e e e e e e e e e ey
|| ADA STYLE DEMD UNCLASSI FI ED SHEET 1 ||
CEEEEEEEEE e e e et e

Appendix C: Sample PDL/81 Designs for Ada 63

CEEEEEETEE et e e e e e e e e e e et e e e e e e ettt e e e e e e e e e e et e e e e e e e e
|| ADA STYLE DEMO UNCLASSI FI ED SHEET 2 ||
CEETEEEETE e e e et e e e et e e e e et e e e e e e e e e e e e e e e e et e e e e et e e e e e et e e e e e e e
CFG, | NC PDL/ 81 ADA PAGE 1.001
21 Jan 92 TABLE OF CONTENTS
TABLE OF CONTENTS
Introduction L L L L L L e e e e e 2
Features of the Ada Design Style 3
The Specification Segnment .. 4
The Flow Segment Indexo o0 5
Exanples L L L L L e e e e e e e e s 6
A Specification Segnent L e 7
First Procedure L L L L L e e e 8
First Function . . e e e e 9
A Procedure with an Exceptl ON e 10
First Task Lo s e s 11
Second Task L L Lo Lo e e 12
Index to Data Itenms Lo 13
Index to Flow Segnmentso 14
Calls-In-Context Listo 15
II
|| ADA STYLE DEMO UNCLASSI FI ED SHEET 2 ||
CEEEEEEETE e et e e e e e e e et e e e e e e e e e e e e e e e e et e e e e e e e e e e e e e e e e e e

64 PDL/81 Ada Design Language Reference Guide

II
|| ADA STYLE DEMO UNCLASSI FI ED EET 3 ||
II
CFG, I NC PDL/ 81 ADA PAGE 2
21 Jan 92

kkkkkhkkhkkhkkhkkhkhkkkkkx

* *

* | ntroduction *

* *

PR R EEEEEEEEEEEE S
II
|| ADA STYLE DEMO UNCLASSI FI ED SHEET 3 ||
CETEECTEEET et et et e et e e et e e et e e et e e et e e et e e et e et e et e et e e et e et e et e ey

Appendix C: Sample PDL/81 Designs for Ada 65

CECEEEETEE e e e e e e e e et e e e e e e e e e e e e e e e e ey o
UNCLASSI FI ED SHEET
[T

L1111
4 ||
NN RN RRRRRREE CEEEEEEETEE et e e e e e e e e e e

CFG, | NC. PDL/ 81 ADA PAGE 3
21 Jan 92 I ntroduction

Features of the Ada Design Style

BRI

#
1 The Ada design style differs fromthe regular PDL/ 81 design
2 style in several inportant ways:
#
3 1. Ada keywords are used.
#
4 2. The constructs for Ada tasking and exceptions are added
5 to the usual constructs for structured prograns.
#
6 3. The general Flow Segnent is replaced by Procedure
7 Segment s, Function Segnents, and Task Body Segments.
#
8 4. The External Segnment is replaced by the Specification
Segnent .
#
9 5. Task entries are included in the flow segment
ref erences.
#
#

BHHHHHHRRHHHH AR HHHH R AR R R R R R R R

AR RN R RN RRRRANRAN
YLE DEMO UNCLAS!
FECEETEEETETEr e e e e e et

AR RR RN RRRRRRRR
SH

111
EET
RN RRR RNy

[T
4 |1
LT

66 PDL/81 Ada Design Language Reference Guide

CLCELEEEEEEEEE ey
ADA STYLE DEMO UNCLASSI FI ED SHEET 5 ||
I CEEEEEEETE e

CFG, | NC. PDL/ 81 ADA PAGE 4
21 Jan 92 I ntroduction

The Specification Segnent

BRI

#
1 The Specification Segnent provides a way to define the
fol |l ow ng:
#
2 1. Procedures
#
3 2. Functions
#
4 3. Tasks
#
5 4. Task Entries
#
6 5. Records
#
7 6. Data
#
8 If a procedure, function, or task is later defined as a
9 segnent, the reference nunber on the left will be to that
10 segnment. Task entries nust be defined in a Specification
Segnent .
#
T

AR RN RRRnANRAN
YLE DEMO UNCLAS!
FECEETEEETETEr e e e e e et

ARRRRRR R RRR RN RRRRRRRR
SH

111
EET
RN RRR RNy

L1111
5 |
LT

Appendix C: Sample PDL/81 Designs for Ada 67

[T L1111 [ITTT] L1111
|| ADA STYLE DEMO UNCLASSI FI ED EET 6 |
II
CFG, | NC. PDL/ 81 ADA PAGE 5

21 Jan 92 I ntroduction

The Fl ow Segment | ndex

BRI

#
1 The Fl ow Segment | ndex uses nany nore types than in the
2 standard design style. Wat used to be just a Fl ow Segnent can
3 now be a Procedure, a Function, or a Task (which may have
4 entries). A procedure or function which appears in a
5 Speci fication Segnment is considered to be global. The possible
types are:
#
7 P procedure
#
8 GP gl obal procedure
#
9 F function
#
10 G- gl obal function
#
11 SP speci fication segnment
#
12 TK task body
#
13 EP task entry
#
14 G obal procedures, global functions, and task entries will have
15 appeared in Specification Segnents. d obal procedures and
17 gl obal functions may al so apppear |later as segments. |n that
case, the definition page given in the index is the page for
18 the segnent, itself, and not the page for the Specification
Segment .
#

BHHHH B

SRR RN RN AR A R RAR RN
YLE DEMO UNCLAS:
RN RN RN RN R RN RRR RN

|||||||||||||||||||||||||||||||||||||
S| FI ED EET 6
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

68 PDL/81 Ada Design Language Reference Guide

CEEEEEETEE e et e e e e e e e e e e et e e e e e e e et e e e e e e e e e e e e e e e e e e e
|| ADA STYLE DEMO UNCLASSI FI ED SHEET 7 ||
CEETEEEETE e e e et e e e et e e e e et e e e e e e e e e e e e e e e e et e e e e et e e e e e et e e e e e e e
CFG, | NC PDL/ 81 ADA PAGE 6
21 Jan 92

R S S

* *

* Exanpl es *

* *

*¥hkkkkhkkkkkk*k
CEETEEEETT et e e et e e e e et e e e e e e e e et e e e e et e e e e et e e e e e et e e e e et e e
|| ADA STYLE DEMO UNCLASSI FI ED SHEET 7 ||
CEEEEEEETE e et e e e e e e e et e e e e e e e e e e e e e e e e et e e e e e e e e e e e e e e e e e e

Appendix C: Sample PDL/81 Designs for Ada 69

NERRRRRRRARE (LI (1111
|| ADA STYLE DEMO UNCLASSI FI ED EET 8 ||
II
CFG | NC PDL/ 81 ADA PAGE 7
21 Jan 92 Exanpl es

A Specification Segnent

REF

PAGE SSS
S S
8S 1 PROCEDURE first procedure (first arg, second arg) --defined | ater S
S 2 PROCEDURE second procedure --not defined in this design S

S 3 S
9S 4 FUNCTION first function () return word S
S 5 S

S 6 RECORD S

S 7 | aaa -- a data item S

S 8 | bbb -- another data item S

S 9 END RECORD S

S 10 S

S 11 --other data not in a record S

S 12 ccc S

S 13 ddd S

S 14 S

11 S 15 TASK first task IS S
S 16 | first entry --this is the only way to define entries S

S 17 | second entry (an argunent) S

S 18 END TASK S

S 19 S

S 20 TASK another task IS --not defined in this design S

S 21 | anot her entry S

S 22 END TASK S

S S
SSS

SRR AR RN AR R RAR RN
YLE DEMO UNCLAS:
RN RN RN RN R RN RRR RN

|||||||||||||||||||||||||||||||||||||
Sl FI ED EET 8
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

70 PDL/81 Ada Design Language Reference Guide

NERRRRRRRARE (LI (1111
|| ADA STYLE DEMO UNCLASSI FI ED EET 9 ||
II
CFG | NC PDL/ 81 ADA PAGE 8
21 Jan 92 Exanpl es

PROCEDURE First Procedure (arg one, arg two)

REF
PAGE PPP

WHI LE first function LOOP
| set ccc to arg two

| EXIT WHEN tine is up
END LOOP

CASE of some selection IS
| VHEN yel | ow =>

| first procedure (aaa, ddd)
| second procedure

| VWHEN red =>

| RETURN
E

POOWOO~NOUMWNEE

UV TUVTTUVTTUVTTUTTUTTUTUTUTTUTTUTTUTDO
e

UV TUVTTUVTTUTUTUVUUTUTUTTUTTUTUTDO

PPP

NRERRENAR RN R R RRRRANRAN
YLE DEMO UNCLAS!
FECEETEEETETEr e e e e e et

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Sl FI ED SHEET 9
CECEEEEEEE T Er e et e e e e e e e e

Appendix C: Sample PDL/81 Designs for Ada 71

NERRRRRRRARE (LI [
|| ADA STYLE DEMO UNCLASSI FI ED SHEET 10 |
III
CFG | NC PDL/ 81 ADA PAGE 9

21 Jan 92 Exanpl es

FUNCTI ON First Function () RETURN word

REF
PAGE FFF
F F
F 1 I F somet hi ng THEN F
F 2 | set sonething to nothing F
F 3 ELSElI F sonet hing el se THEN F
F 4 | set sonething to nothing el se F
F 5 ELSE F
8F 6 | first procedure (ccc, ddd) F
F 7 END I F F
F F

FFF

NRERREN AR RN RRRRnNRAN
YLE DEMO UNCLAS!
FECEETEEETETEr e e e e e et

II
Sl FI ED SHEET 10 ||
FETEECTEEETEEr et et et et e e

72 PDL/81 Ada Design Language Reference Guide

CECELEEEEEEEEE ey
ADA STYLE DEMO UNCLASSI FI ED SHEET 11 ||
I CEEEEEEETE e

CFG | NC PDL/ 81 ADA PAGE 10
21 Jan 92 Exanpl es

PROCEDURE A Procedure with an Exception

REF
PAGE PPP
P P
P 1 FOR all time LOCP P
7P 2 | second procedure P
P 3 END LOOP P
R R R R P
P EXCEPTI ON P
P 5 WHEN overfl ow => P
P 6 set to |argest numnber P
P 7 WHEN under f| ow => P
P 8 set to zero P
P P
PPP

NRERRENAR RN R RN RRRRnNRAN
YLE DEMO UNCLAS!
FECEETEEETETEr e e e e e et

AR RRRRR RN RN RRRRRRER
SH

111
EET
RN RN RN

(LT
11 ||
[T

Appendix C: Sample PDL/81 Designs for Ada 73

CEEEEEETEE e et e e e e e e e e e et e e e e e e et e e e e e e e e e et e e e e e e e e e
|| ADA STYLE DEMO UNCLASSI FI ED SHEET 12 ||
II
CFG, | NC PDL/ 81 ADA PAGE 11
21 Jan 92 Exanpl es
TASK BODY First Task
REF
PAGE TTTTTTTTTTTTTTTTTTITTTITITT T T T T T TI T T T T T T T T T I T T T T I T I T T I T T T T I T T I TTTITTTITITTITITTITITTTITTT
T T
T 1 LOOP T
T 2 | SELECT T
T 3 | WHEN true => T
7T 4 | | ACCEPT first entry T
T 5 | OR WHEN true => T
7T 6 | | ACCEPT second entry (an in-out argunent) DO T
T 7 | | incement argument by 5 T
T 8 | | END T
T 9 | R T
T 10 | DELAY for half an hour T
T 11 | ELSE T
T 12 | nobody i s responding T
T 13 | END SELECT T
T 14 END LOOP T
T T
TTTTTTTTTTTT T T T T T T T I T I T I I I T I T I T T T I I I I I I I I I T I T ITI T I T I I T T T T T T TTTITTTTT
II
|| ADA STYLE DEMO UNCLASSI FI ED SHEET 12 ||
CEEEEEEETE e et e e e e e e e et e e e e e e e e e e e e e e e e et e e e e e e e e e e e e e e e e e e

74 PDL/81 Ada Design Language Reference Guide

CETEECTEEET et et et e e et e et e e et e e et e et e e et e e et e et e e et e et e et e et et ety
|| ADA STYLE DEMO UNCLASSI FI ED SHEET 13 ||
II
CFG, | NC PDL/ 81 ADA PAGE 12
21 Jan 92 Exanpl es
TASK BODY Second Task
REF
PAGE TTTTTTTTTTTTITTTITTITITTITTTITTITITTI I T T T I T T I T I T I T T I T T I T I T T I T T I T I T T I T TITTITITTITTITITTITITT
T T
T 1 LOOP T
7T 2 | anot her entry T
T 3 | SELECT T
7T 4 | | second entry (ddd) T
T 5 | ELSE T
8T 6 | | first procedure (aaa, bbb) T
T 7 | END SELECT T
T 8 END LOOP T
T T
TTTTTTTTTTTIT T T T T T T I T I T T T T T T T T T T T T T T T T T T I T T T T T T T T T I T T T T T T T I T I TITITITTITTITITITTITITTTIT

II
|| ADA STYLE DEMO UNCLASSI FI ED SHEET 13 ||
CETEECTEEET et et et e et e e et e e et e e et e e et e e et e e et e et e et e et e e et e et e et e ey

Appendix C: Sample PDL/81 Designs for Ada 75

CETEECTEEET et et et e e et e e et e e et e et e et e e et e e et e e et e et e et e et e et et ety
|| ADA STYLE DEMO UNCLASSI FI ED SHEET 14 ||
CEERTEETEEer ettt et e e e et et e e e e e e e e e e e e et et e e e e e et e ey
CFG, I NC PDL/ 81 ADA PAGE 13
21 Jan 92

khkkkhkkhkkhkhkhkhhkhhkhhkkhkkhkhkx
* *
* | NDEX TO DATA | TEMS *
* *

LR EE R EEEEEEEEEEEEEEEEEE]

CEERTEETEE et et et et e et e e e et e e e e e e e e e e e e et et e e et et ey
|| ADA STYLE DEMO UNCLASSI FI ED SHEET 14 ||
CETEECTEEET et et et e et e e et e e et e e et e e et e e et e e et e et e et e et e e et e et e et e ey

76 PDL/81 Ada Design Language Reference Guide

FECEELCTEEETE e e e e e e e e e e et ey
|| ADA STYLE DEMO UNCLASSI FI ED SHEET 15 ||
II
CFG, INC. PDL/ 81 ADA PAGE 13.001
21 Jan 92 I NDEX TO DATA | TEMS

I NDEX TO DATA | TEMS

PAGE LINE TYPE NAME AND REFERENCES

8 first procedure
7

12 Second Task
6

7 8 Di bbb
12 Second Task
6

7 12 DI ccc
9 first function
6
8 first procedure
2

7 13 D ddd
9 first function
6
8 first procedure
7
12 Second Task
4

SRR RA AR RN AR R RAR RN
YLE DEMO UNCLAS:
RN RN RN RN R RN RRR RN

|||
Sl FI ED SHEET 15 ||
FETEECTEEETEEr et et et et e e

Appendix C: Sample PDL/81 Designs for Ada 77

CETEECTEEET et et r et e et e et e e et e e et e et e e et e e et e e et e et e e et e e et e et et ety
|| ADA STYLE DEMO UNCLASSI FI ED SHEET 16 ||
II
CFG, I NC PDL/ 81 ADA PAGE 14
21 Jan 92

R S S S I
* *
* | NDEX TO FLOW SEGVENTS *
* *

R R R R EEEREEEEEEEEEEREEEEEEESE]

AR AR R RN RRRRANRAN
YLE DEMO UNCLAS!
FECEETEEETETEr e e e e e et

III
Sl FI ED SHEET 16 ||
FETEECTEEETEEr et et et et e e

78 PDL/81 Ada Design Language Reference Guide

ARRRRRNERERE (11111 [l
|| ADA STYLE DEMO UNCLASSI FI ED SHEET 17 ||
II
CFG INC. PDL/ 81 ADA PAGE 14.001
21 Jan 92 I NDEX TO FLOW SEGQVENTS

I NDEX TO FLOW SEGMVENTS

PAGE LINE TYPE NAME AND REFERENCES

10 P A Procedure with an Exception
7 21 EP anot her entry
12 Second Task
2
7 16 EP first entry
11 First Task
4
9 G- first function
8 first procedure
1
8 GP first procedure
9 first function
6
8 first procedure
7
12 Second Task
6
11 TK First Task
7 17 EP second entry
11 First Task
6
12 Second Task
4
7 2 GP second procedure
10 A Procedure with an Exception
2
8 first procedure
8
12 TK Second Task

SRR RA AR RN AR A RN RAR RN
YLE DEMO UNCLAS:
RN RN RN RN R RN RRR RN

|||
Sl FI ED SHEET 17 ||
FETEECTEEETEEr et et et et e e

Appendix C: Sample PDL/81 Designs for Ada 79

CETEECTEEET et et et e e et e et e e et e e et e et e e et e e et e et e e et e et e et e et et ety
|| ADA STYLE DEMO UNCLASSI FI ED SHEET 18 ||
II
CFG, I NC PDL/ 81 ADA PAGE 15
21 Jan 92

R S S o
* *
* CALLS-I N- CONTEXT LI ST *
* *

R R R EEEREEEEEEEEREEEEEEES]

AR AR R RN RRRRANRAN
YLE DEMO UNCLAS!
FECEETEEETETEr e e e e e et

III
Sl FI ED SHEET 18 ||
FETEECTEEETEEr et et et et e e

80 PDL/81 Ada Design Language Reference Guide

ARRRNRRARANY L1111 I
|| ADA STYLE DEMO UNCLASSI FI ED SHEET 19 ||
II
CFG, INC. PDL/ 81 ADA PAGE 15.001
21 Jan 92 CALLS- | N- CONTEXT LI ST

CALLS- I N- CONTEXT LI ST

F PAGE NAME / CALL

10 A Procedure with an Exception

7 anot her entry
12 anot her entry

7 first entry --this is the only way to define entries
11 accept first entry

7 function first function () return word
9 First Function () return word
8 while first function | oop

7 procedure first procedure (first arg, second arg) --defined later
8 First Procedure (arg one, arg two)

8 first procedure (aaa, ddd)

9 first procedure (ccc, ddd)

2 first procedure (aaa, bbb)

7 second entry (an argument)
11 accept second entry (an in-out argunent) do
12 second entry (ddd)

7 procedure second procedure --not defined in this design
8 second procedure
10 second procedure

AR AR RRRRANRAN
YLE DEMO UNCLAS!
FECEETEEETETEr e e e e e et

III
Sl FI ED SHEET 19 ||
FETEECTEEETEEr et et et et e e

Appendix C: Sample PDL/81 Designs for Ada 81

II
|| ADA STYLE DEMO UNCLASSI FI ED EET 20 OF 20 ||
II
R S S S I
* *
* END OF DESI GN DOCUMENT *
* *
R R R R EEEREEEEEEEEEEREEEEEEESE]
STATI STI CS
5 fl ow segnents.
2370 lines in definition file(s).
151 lines in source file(s).
668 dictionary entries allocated.
2539 string segnents allocated; 2374 in use.
72192 bytes of dynam c nmenory all ocated.
II
|| ADA STYLE DEMO UNCLASSI FI ED SHEET 20 OF 20 ||
CEEEEEEETE e et e e e e e e e et e e e e e e e e e e e e e e e e et e e e e e e e e e e e e e e e e e e

82 PDL/81 Ada Design Language Reference Guide

C.1.2 Source Listing

The input lines which resulted in the design document of the preceding section
are:

% - -sada

% @#) $Header: adal,v 2.0 88/03/27 16:09:16 shc Rel $
#{nr; _kwerr; 0}

Ysecurity UNCLASSI Fl ED

%pr oj ect ADA STYLE DEMO

%itle PDL/81 Ada

%itle Denponstration

%i c

SKw |

%No Sbox

Y%NoTr ee

% | ntroduction

9%9F Features of the Ada Design Style

The Ada design style differs fromthe regular PDL/81 design style in several
i mportant ways:

%l

Ada keywords are used.

The constructs for Ada tasking and exceptions are added to the usual constructs
for structured prograns.

The general Flow Segnent is replaced by Procedure Segments, Function Segnents,
and Task Body Segnents.

The External Segnment is replaced by the Specification Segnent.

Task entries are included in the flow segnment references.

% e

%F The Specification Segnent

The Specification Segment provides a way to define the follow ng:
%l

Procedur es

Functi ons
Tasks

Task Entries
Recor ds

Dat a

% e

If a procedure, function, or task is later defined as a segnment, the reference
nunber on the left will be to that segnent.

Task entries nmust be defined in a Specification Segnent.

%F The Fl ow Segnent | ndex

The Fl ow Segnent | ndex uses many nore types than in the standard design style.
What used to be just a Fl ow Segnent can now be a Procedure, a Function, or a
Task (which may have entries).

A procedure or function which appears in a Specification Segment is considered
to be global.

The possible types are:

Wl 7

%verb P

procedure

%verb GP

gl obal procedure

%verb F

function

Appendix C: Sample PDL/81 Designs for Ada 83

%verb GF

gl obal function

%erb SP

speci fication segnment

%verb TK

task body

%verb EP

task entry

% e

G obal procedures, global functions, and task entries will have appeared in
Speci fication Segnents

A obal procedures and gl obal functions nay al so apppear |ater as segnents.
In that case, the definition page given in the index is the page for the
segnent, itself, and not the page for the Specification Segnent.

%5 Exanpl es

YSPEC A Speci fication Segment

procedure first procedure (first arg, second arg) --defined later
procedure second procedure --not defined in this design

function first function () return word

record
aaa -- a data item
bbb -- another data item

end record

--other data not in a record
cce
ddd

task first task

first entry --this is the only way to define entries
second entry (an argument)

end task

task another task --not defined in this design
anot her entry

end task

% First Procedure (arg one, arg two)
while first function | oop

set ccc to arg two

exit when time is up

end | oop

case of sone selection

when yel | ow

first procedure (aaa, ddd)

second procedure

when red =>

return

end case

% First Function () return word
i f sonething

set sonething to nothing

el seif sonething el se

set sonet hing to nothing el se

el se

first procedure (ccc, ddd)

end if

% A Procedure with an Exception
for all time

second procedure

end | oop

exception

when overfl ow

set to | argest nunber

when underfl ow

84 PDL/81 Ada Design Language Reference Guide

set to zero

YTASKBODY First Task

| oop

sel ect

when true

accept first entry

or when true

accept second entry (an in-out argunment) do
i ncenent argunent by 5
end

or

delay for half an hour
el se

nobody i s responding
end sel ect

end | oop

Y%TASKBODY Second Task
| oop

anot her entry

sel ect

second entry (ddd)

el se

first procedure (aaa, bbb)
end sel ect

end | oop

Appendix C: Sample PDL/81 Designs for Ada 85

C.2 A Complete High-Level Design
This design presents a complete high-level design using the ada style.

C.2.1 Output of PDL/81 Processor

Beginning on the next page is the actual output of the PDL/81 processor when
presented with the source shown in Section C.2.2.

86 PDL/81 Ada Design Language Reference Guide

NRRRRRRARRNARN
UNCLAS:

CETEECTEEETEEr et e et et et e
Sl FI ED SHEET 1 ||
RN RN RN RN RN RRRERRR RN

CAI NE, FARBER & GORDON, | NC.
1010 EAST UNI ON STREET
PASADENA, CALI FORNI A 91106

IR R R EEEEEEEEEREEREEREEEERESESES]

*

Aircraft Mnitor System*
*
A Sanpl e Design
Usi ng

Ada Tasking Facilities

PDL/ 81 X2.0.911

5500- PD8

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
21 Jan 92 *
*
*
*
*
*
*

EIE R I I S S S

I [l FECEELETEEETEr e e et ey
Al RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 1 ||
I I I CECEEEEEEE T e e e e e e e e e e e e e e e e e e ey

Appendix C: Sample PDL/81 Designs for Ada 87

CEEETEEEEEE e e e e e e e e e e e e e e e e e e et e e e e e e e et e e e e e e e e e e ey
|| AI'RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 2 |
CEETEEEETE e e e et e e e et e e e e et e e e e e e e e e e e e e e e e et e e e e et e e e e e et e e e e e e e
CFG, | NC Al RCRAFT MONI TOR SYSTEM PAGE 1.001
21 Jan 92 TABLE OF CONTENTS
TABLE OF CONTENTS
Task Definitions L . Lo s 2
Task Connections e e e 3
Foreground Tasks L L L L Lo 4
Background Tasks L Lo Lo 0oL 0o 5
The Hardware Software Interface .. 6
Hardware Operationso 7
Interrupt Actions L L L L L e e 8
Task Bodies L e e 9
Conmmand Executor L L L L oL 10
Commands e 11
AlarmHandler L . Lo 12
Change Alarmso e e 13
Sensor Poll L L e s 14
Monitor Sensor Status L oL oo 15
Smoke Status Monitor L L L L 0L Lo 16
Display Handler .. 17
Rebuild Display L e e 18
Display One Line oo 19
VDU Formatter Lo 20
Time Stanmper L oL 21
Index to Flow Segnmentso 22
Index to Requirenents References ... 23
Calls-In-Context List 24
||
|| Al RCRAFT MONI TOR SYSTEM UNCLASSI FI ED EET 2 |
II

88 PDL/81 Ada Design Language Reference Guide

II
|| AI'RCRAFT MONI TOR SYSTEM UNCLASSI FI ED EET 3 ||
II
CFG, I NC Al RCRAFT MONI TOR SYSTEM PAGE 2
21 Jan 92

kkkkkkhkkhkkhkkhkkhkkhkkhkhkhkhkkkkx

* *

* Task Definitions *

* *

IR R R EEEEEEEEEEEEEE SRS
II
|| Al RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 3 ||
CETEECTEEET et et et e et e e et e e et e e et e e et e e et e e et e et e et e et e e et e et e et e ey

Appendix C: Sample PDL/81 Designs for Ada 89

FECEEEEEEEE TP e e e e e e e e e e e e e e e e
UNCLASSI FI ED SHEET
[T

L1111
4 ||
ERRRRRRRRRRRN CEEEEEEETEE et e e e e e e e e e e

CFG, | NC. Al RCRAFT MONI TOR SYSTEM PAGE 3
21 Jan 92 Task Definitions

Task Connecti ons

BRI

#
1
2 command e keyboard
3 execut or !
4 (I snoke !
5 [R L R R R > detector---->!
6 [! !
7 [> lights ! !
8 [! \% !
9 [I al arm snoke !
10 [T > handler <------ R nmoni t or !
11 (I ! ! !
12 1 ! ! !
13 1 ! ! !
14 I > display <---------- SENSOr----------------- >!
15 ! ! ! pol |l <---- cl ock !
16 ! ! ! ! ! ! \%
17 ! ! ! ! ! ---->tine
18 --> VDU <--<-------- ! sensors st anper
19 formatter \ !
20 ! dials !
21 ! \%
22 % recorder
23 screen
24
#

BRIHHH B

[[RNy
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

CETEECTEEETEEr et et e et et e e
Sl FI ED SHEET 4 ||
FETEECTEEETEEr et et et et e e

90 PDL/81 Ada Design Language Reference Guide

[ITTT] [[L1111 [ITTT] [T
|| AI'RCRAFT MONI TOR SYSTEM UNCLASSI FI ED EET 5 |
II
CFG, | NC. Al RCRAFT MONI TOR SYSTEM PAGE 4
21 Jan 92 Task Definitions

For eground Tasks

REF

PAGE SSS
10 TASK command executor 1S

| command keystroke (keystroke)

END TASK

12 TASK al arm handler |S

| acknow edge al arm (acknow edge code)

| change alarm state (al arm nunber, state)

END TASK

©CoOoO~NOODWNE

17 10 TASK di splay handler 1S
| change di spl ay node (display node)
12 | change display state (display state)
13 | di spl ay sensor val ue (sensor nunber, val ue)
14 END TASK
20 16 TASK VDU formatter IS
17 | cl ear VDU di spl ay
18 | di spl ay conmand on VDU (nmessage)
19 | display Iine on VDU (nessage)
20 END TASK

NOOLLLOLOLOLOOLLOLOLOLOOOOOOLOOLOLnnonow
=
(i
NOuLLLLOLOLOOLLLOLOLOOOOOLOOLOLnnnow

SSS

Requirenents: 3.2.1, 3.8

[[RN RNy
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

RN RN
S| FI ED SHEET 5
RN RN RN RN RNy

Appendix C: Sample PDL/81 Designs for Ada 91

[ITTT] [[L1111 [ITTT] L1111
|| AI'RCRAFT MONI TOR SYSTEM UNCLASSI FI ED EET 6 |
II
CFG, | NC. Al RCRAFT MONI TOR SYSTEM PAGE 5

21 Jan 92 Task Definitions

Background Tasks

REF
PAGE SSS
S S
14 s 1 TASK sensor poll IS S
S 2 END TASK S
S 3 S
16 S 4 TASK snmoke status nonitor IS S
S 5 | nmoni tor snoke (detector nunber, state) S
S 6 END TASK S
S 7 S
21 S 8 TASK time stanper |S S
S 9 | time stanp (type, first value, second val ue) S
S 10 | change tinme (tinme) S
S 11 END TASK S
S S

SSS

Requirenents: 3.2.1, 3.8

[[FECTEEETEEETErr ey
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Sl FI ED SHEET 6
CECEEEEEEE T Er e et e e e e e e e e

92 PDL/81 Ada Design Language Reference Guide

CETEECTEEET et et et e e et e e et e e et e et e et e e et e e et e et e et e et e et e et e e ety
|| AI'RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 7 ||
CEERTEETEEer ettt et e e e et et e e e e e e e e e e e e et et e e e e e et e ey
CFG, I NC Al RCRAFT MONI TOR SYSTEM PAGE 6
21 Jan 92

EIE R IR R I I I R R R I

* *

* The Hardware Software Interface *

* *

IR R R R R RS SRR SRS SRR SR REEREEEEEEEEEEEESEY]
CEEETERTEE et et e et et e er e e et e e e e e et e e e e et et e e e et et ey
|| Al RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 7 ||
CETEECTEEET et et et e et e e et e e et e e et e e et e e et e e et e et e et e et e e et e et e et e ey

Appendix C: Sample PDL/81 Designs for Ada 93

[ITTT] [[L1111 [ITTT] (1111
|| AI'RCRAFT MONI TOR SYSTEM UNCLASSI FI ED EET 8 |
II
CFG, | NC. Al RCRAFT MONI TOR SYSTEM PAGE 7

21 Jan 92 The Hardware Software Interface

Har dwar e Operati ons

BRI

1 The aircraft nmonitor system has the foll owi ng hardware
interfaces:
2 Sensors Input fromthe sensors yields a value or no
response.
3 Smoke Det ectors An interrupt gives the detector nunber and
4 the new state. Qutput to a snpke detector

puts it through a test cycle.

5 Li ghts Qutput to a light change it to green or
red.
6 Di al s Qutput to a dial change the val ue
di spl ayed.
7 Keyboard An interrupt gives the keystroke val ue.
8 VDU Scr een Qutput to the VDU changes the display.
9 C ock An interrupt gives a new tine.
10 Recor der Qutput to the recorder is saved.
11 The next page shows the interface between the hardware

interrupts and the preceding tasks.

HHHFHHFHFHEHFHFHEHFHRHEFEHFFRHEHFERHEFEHEREHS
HHHFHHFHFFHEHFHFHEHFHFRERFEHFFRHEHFEFHE RS

BRHAHHHH R RHHHH R HHH R AR R R R R R R

[[RNy
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

|||||||||||||||||||||||||||||||||||||
Sl FI ED EET 8
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

94 PDL/81 Ada Design Language Reference Guide

[ITTT] [[L1111 [ITTT] (1111
|| AI'RCRAFT MONI TOR SYSTEM UNCLASSI FI ED EET 9 ||
II
CFG, | NC. Al RCRAFT MONI TOR SYSTEM PAGE 8

21 Jan 92 The Hardware Software Interface

PROCEDURE | nterrupt Actions

REF (CX = 0)

PAGE PPP
P P

P 1 --keystroke interrupt P

4 P 2 command keystroke (keystroke) P
5P 3 time stanp (key type, keystroke, null) P
P 4 -- P

P 5 --snoke interrupt P
5P 6 nmoni tor snmoke (nunber, state) P
5P 7 time stanp (snoke type, state, number) P
P 8 -- P

P 9 --clock interrupt P

5 P 10 change tinme (clock time) P
P P
PPP

Requirenents: 3.7, 3.14.2

[[FECTEEETEEETErr ey
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Sl FI ED SHEET 9
CECEEEEEEE T Er e et e e e e e e e e

Appendix C: Sample PDL/81 Designs for Ada 95

AR AR RN R AR RN NN
SHEET 10

[l
UNCLASSI FI E

[I
FT MONI TOR SYSTEM

111
RCRA

[
Al

PAGE 9

Al RCRAFT MONI TOR SYSTEM

I NC

21 Jan 92

CFG

khkkkhkkhkkhkkhkkhkkkk

*
* Task Bodies *

*
*

*

*khkkkkkkkkkkkkkkx

LTI
SHEET 10

YSTEM

OR

—

96 PDL/81 Ada Design Language Reference Guide

CETEECTEECT et et et e et e e et e e et e et e et e e et e e et e et e e et e et e et e et e et ety
|| AI'RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 11 |
II
CFG, | NC. Al RCRAFT MONI TOR SYSTEM PAGE 10

21 Jan 92 Task Bodi es

TASK BODY Command Execut or

REF (CX = 2)

PAGE TTTTTTTTTTTTTTTTTTITTTITITT T T T T T TI T T T T T T T T T I T T T T I T I T T I T T T T I T T I TTTITTTITITTITITTITITTTITTT
T T

T 1 LOOP T
4T 2 | ACCEPT conmand keystroke (keystroke) T
T 3 | determ ne command type and code from keystroke T

T 4 | CASE of command type IS T

T 5 | | WHEN snoke test => T

T 6 | | FOR al | snoke detectors LOOP T

T 7 | | | output to detector (test command) T

T 8 | | END LOOP T

T 9 | | VWHEN nodes => T

4 T 10 | | change di spl ay mbde (comand code) T
T 11 | | WHEN acknow edgenments => T

4 T 12 | | acknow edge al arm (command code) T
T 13 | END CASE T

4 T 14 | di spl ay conmand on VDU (conmand nane) T
T 15 END LOOP T

T T
TTTTTTTTTT I T T T T I T T T T I T T T I I I T T T T I T T T T T T T I I T T T T I I T T I I T T TT T I T T T I I T T T I T T ITI I T

Requi rements: 3.8, 3.12.5

[[RN ANR RNy
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

|||
Sl FI ED SHEET 11 ||
FETEECTEEETEEr et et et et e e

Appendix C: Sample PDL/81 Designs for Ada 97

[ITTT] [[L1111 [ITTT] [
|| AI'RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 12 |
II
CFG, | NC. Al RCRAFT MONI TOR SYSTEM PAGE 11
21 Jan 92 Task Bodi es

Conmands

BRI

test conmands
snmoke test

acknow egenent s
engi ne pressure warni ng
engi ne tenperature warning
fuel |evel warning

di spl ay nodes
nmost recent readi ngs
sensor histories
cal cul ated val ues
rates of change

POOWOO~NOUM_WNEE

HFHHFHFHFHFHFHFFEHRHFRER
e

HHFHHFHEFHEHHHHH

BRHHHHH R HHHH R R R R R R R R

Requirenents: 3.4.5, 3.4.6, 3.7.2, 3.9

[[FECTELETEEETErr ey
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

III
Sl FI ED SHEET 12 ||
FETEECTEEETEEr et et et et e e

98 PDL/81 Ada Design Language Reference Guide

CETEECTEEET et et et e e et e e et e e et e et e et e et e e et e e et e et e et e et e et e et ety
|| AI'RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 13 |
II
CFG, | NC. Al RCRAFT MONI TOR SYSTEM PAGE 12

21 Jan 92 Task Bodi es

TASK BODY Al ar m Handl er

REF (CX = 4)

PAGE TTTTTTTTTTTTTTTTTTITTTITITT T T T T T TI T T T T T T T T T I T T T T I T I T T I T T T T I T T I TTTITTTITITTITITTITITTTITTT
T T

T 1 LOOP T

T 2 | SELECT whi chever is ready T
4T 3 | | ACCEPT acknow edge al arm (acknow edge code) T
T 4 | | FOR all alarmflags LOOP T

T 5 | | | IF the flag belongs to the acknow edged cl ass THEN T

T 6 | | | | reset current alarmflag T

T 7 | | | END | F T
T 8 | | END LOOP T
13T 9 | | change al arns T
T 10 | OR T
4 T 11 | | ACCEPT change al arm state (al arm nunber, state) T
T 12 | | CASE of state IS T

T 13 | | | WHEN present => T

T 14 | | | output to lights (alarm nunber, red) T

T 15 | | | set alarmflag (al arm nunber) T

13 T 16 | | | change al arns T
T 17 | | | WHEN absent => T

T 18 | | | output to lights (alarm nunber, green) T

T 19 | | END CASE T
T 20 | END SELECT T

T 21 END LOOP T

T T
TTTTTTTTTT I T T T T I T T T T I T T T T I I T T T I T T T T I I T T T T I T T T T I I T T I I T T T T I T T T I I T T T I T T TTI T T

Requi rements: 3.2.2.3, 3.4, 3.7.8

[[RN RNy
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

|||
Sl FI ED SHEET 13 ||
FETEECTEEETEEr et et et et e e

Appendix C: Sample PDL/81 Designs for Ada 99

FECEEEEEETE e
UNCLASSI FI ED SHEET 14 ||
CEEEEEEETE e

CFG, | NC. Al RCRAFT MONI TOR SYSTEM PAGE 13
21 Jan 92 Task Bodi es

PROCEDURE Change Al ar ns

REF (CX = 2)

PAGE PPP
P P

P 1 IF there are any alarnms set THEN P

4 P 2 | change di splay state (suspend) P
4 P 3 | clear VDU displ ay P
P 4 | FOR every al arm LOOP P
4P 5 | | display line on VDU (nessage for alarm P
P 6 | END LOOP P

P 7 ELSE P

4 P 8 | cl ear VDU di spl ay P
4 P 9 | change di splay state (resune) P
P 10 END | F P

P P
PPP

Requirenents: 3.7.8, 3.4

[[FECTEEETEEETErr ey
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

AR RRRRR RN RN RRRRRRER
SH

111
EET
RN RN RN

(111
14 ||
[T

100 PDL/81 Ada Design Language Reference Guide

CETEEETEEET ettt et e e et e e et e e et e et e et e e et e e et e et e et e et e et e et e et e ey
|| AI'RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 15 ||
CEERTEETEEer ettt et e e e et et e e e e e e e e e e e e et et e e e e e et e ey
CFG, | NC. Al RCRAFT MONI TOR SYSTEM PAGE 14
21 Jan 92 Task Bodi es

TASK BODY Sensor Pol

REF (CX = 2)
PAGE TTTTTTTTTTTTITTTITTITITTITTTITTITITTI I T T T I T T I T I T I T T I T T I T I T T I T T I T I T T I T TITTITITTITTITITTITITT

T T
T 1 LOOP T
T 2 | DELAY until the start of the second T
T 3 | FOR each sensor LOOP T
T 4 | | read from sensor T
T 5 | | I F the sensor did not give a reading THEN T
T 6 | | | set reading to default val ue T
T 7 | | END I F T
T 8 | | convert readi ng to degrees T
T 9 | | output value to circular display (sensor nunber, degrees) T
4 T 10 | | di spl ay sensor val ue (sensor nunber, reading) T
5T11 | | time stanp (sensor type, sensor nunber, reading) T
15 T 12 | | nmoni tor sensor status (sensor nunber, reading) T
T 13 | END LOOP T
T 14 END LOOP T
T T
TTTTTTTTTTTT T T T T T T I T I T I T I I T I T I T I T I T I I T T I I I I T I T I T T T T TTITTITTTTT

Requirenents: 3.2.2, 3.4.4

CEEEEEEEEE e e e e e e e e e et e
|| Al RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 15 ||
CECEEEEEEEE T e et e e e e e e e e e e e et ey

CFG,
21 Jan 92

REF

NC.

Appendix C: Sample PDL/81 Designs for Ada 101

[L1111 [ITTT] [
MONI TOR SYSTEM UNCLASSI FI ED SHEET 16 |
II
Al RCRAFT MONI TOR SYSTEM PAGE 15

Task Bodi es

PROCEDURE Monitor Sensor Status (sensor nunber, reading)

(CX = 1)
PAGE PPP
P P
P 1 determ ne when three in a row condition is nmet for this sensor P
P 2 I F the sensor changed its state THEN P
P 3 | change alarm state (al arm nunber for sensor, new state) P
P 4 END I F P
P P
PPP

Requirenents: 3.8.6, 3.8.7, 3.12

FECTEEETEEETErr ey
MONI TOR SYSTEM UNCLAS:
[RNRRRRRRRRRRY

III
Sl FI ED SHEET 16 ||
FETEECTEEETEEr et et et et e e

102 PDL/81 Ada Design Language Reference Guide

CETEECTEEET et et et e e et e e et e e et e et e et e e et e e et e et e et e et e et e et e et ety
|| AI'RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 17 |
II
CFG, | NC. Al RCRAFT MONI TOR SYSTEM PAGE 16

21 Jan 92 Task Bodi es

TASK BCODY Snpke Status Monitor

REF (CX = 3)

PAGE TTTTTTTTTTTTTTTTTTITTTITITT T T T T T TI T T T T T T T T T I T T T T I T I T T I T T T T I T T I TTTITTTITITTITITTITITTTITTT
T T
T 1 LOOP T

5T 2 | ACCEPT noni tor snmpke (nunber, state) T
T 3 | IF the state was snoke THEN T
T 4 | | set smoke for that detector nunber T
T 5 | | | F snoke state is not set THEN T
T 6 | | | set snmoke state T

4T 7 | | | change al arm state (snpke al arm nunber, present) T
T 8 | | END I F T
T 9 | ELSE - - nosnoke T
T 10 | | set nosnoke for that detector number T
T 11 | | | F snmoke state is set and nosnobke is set for all detectors T
T | | | THEN T
T 12 | | | reset snoke state T

4 T 13 | | | change al arm state (snmoke al arm nunber, absent) T
T 14 | | END I F T
T 15 | END I F T
T 16 END LOOP T
T T
TTTTTTTTTTTT T T T T T T T I I I T I I T I I I T I T T I T I I I I I I I I I I I I T I T I T T I T I T T T T T T TTTTTTTT
Requirenents: 3.8.6, 3.8.7, 3.12

AARRRRRRR RN NRRRRRRRRRRNN ||||||||||||||||||||||||||||||||||

[[FLETELTT L1111 I
Al RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 17 ||
[[[CECEEEEEE ey

Appendix C: Sample PDL/81 Designs for Ada 103

CEEEEEEEEEEr e e et e e et e e e e e e e e e e e e et e
|| Al RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 18 |
II
CFG, | NC Al RCRAFT MONI TOR SYSTEM PAGE 17
21 Jan 92 Task Bodi es
TASK BODY Di spl ay Handl er
REF (CX = 2)
PAGE TTTTTTTTTTTTTTTTTTITTTITITT T T T T T TI T T T T T T T T T I T T T T I T I T T I T T T T I T T I TTTITTTITITTITITTITITTTITTT
T T
T 1 LOOP T
T 2 | SELECT whi chever is ready T
4T 3 | | ACCEPT change display state (new state) T
T 4 | | CASE of new state IS T
T 5 | | | WHEN suspended => T
T 6 | | | set suspend T
T 7 | | | WHEN r esunmed => T
T 8 | | | reset suspend T
18T 9 | | | rebuil d display T
T 10 | | END CASE T
T 11 | oR T
4 T 12 | | ACCEPT change di spl ay node (node) T
T 13 | | save di spl ay node T
18 T 14 | | rebuil d display T
T 15 | OoR T
4 T 16 | | ACCEPT di spl ay sensor val ue (sensor nunber, sensor reading) T
T 17 | | enter reading in the sensor history buffer T
19 T 18 | | di splay one line T
T 19 | END SELECT T
T 20 END LOOP T
T T
TTTTTTTTTTTT T T T T T I T T T T I I T I I T I I I T T T T T I T T TTTTTITTTT

Requirenents: 3.8.6, 3.8.7, 3.12

[[RN RNy
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

|||
Sl FI ED SHEET 18 ||
FETEECTEEETEEr et et et et e e

104 PDL/81 Ada Design Language Reference Guide

[ITTT] [[L1111 [ITTT] [
|| AI'RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 19 |
II
CFG, | NC. Al RCRAFT MONI TOR SYSTEM PAGE 18

21 Jan 92 Task Bodi es

PROCEDURE Rebui | d Di spl ay

REF (CX = 1)
PAGE PPP

P P
P 1 choose a starting place in the sensor history buffer P
P 2 WHI LE the current sensor entry is not the |atest LOOP P
19 P 3 | di splay one line P
P 4 END LOOP P
P P
PPP

Requirenents: 3.8.1, 3.12.12

[[FECTEEETEEETErr ey
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

III
Sl FI ED SHEET 19 ||
FETEECTEEETEEr et et et et e e

Appendix C: Sample PDL/81 Designs for Ada 105

[ITTT] [[L1111 [ITTT] [
|| AI'RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 20 |
II
CFG, | NC. Al RCRAFT MONI TOR SYSTEM PAGE 19

21 Jan 92 Task Bodi es

PROCEDURE Di spl ay One Line

REF (CX = 1)
PAGE PPP

RETURN i f suspend is set

--build a line with the appropriate information
CASE of display node IS

| WHEN nost recent readi ngs =>

| WHEN sensor histories =>

| WHEN rates of change =>

| WHEN cal cul ated val ues =>

END CASE

display line on VDU (line just constructed)

UV UVTVTTUUTUVTTUTTUTUTTTO
©CoOoO~NOODWNE
UV UVTUVTTUUTUVTTUTTUTUTTTO

PPP

Requi rements: 3.9.1

[[FECTEEETEEETErr ey
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

III
Sl FI ED SHEET 20 |
FETEECTEEETEEr et et et et e e

106 PDL/81 Ada Design Language Reference Guide

CETEECTEEET et et et e e et e e et e e et e et e e et e e et e et e et e et e et e et e et e et ety
|| AI'RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 21 ||
II
CFG, | NC. Al RCRAFT MONI TOR SYSTEM PAGE 20
21 Jan 92 Task Bodi es

TASK BODY VDU Formatt er

REF (CX = 1)

PAGE TTTTTTTTTTTTTTTTTTITTTITITT T T T T T TI T T T T T T T T T I T T T T I T I T T I T T T T I T T I TTTITTTITITTITITTITITTTITTT
T T

T 1 LOOP T

T 2 | SELECT whi chever is ready T
4T 3 | | ACCEPT display |ine on VDU (nmessage) T
T 4 | | write nessage at the bottom of the screen T

T 5 | oR T
4T 6 | | ACCEPT cl ear VDU di spl ay T
T 7 | | clear the screen except for the command |line T

T 8 | oR T
4T 9 | | ACCEPT di spl ay comrand on VDU (nmessage) T
T 10 | | write nessage on the command |ine T

T 11 | END SELECT T

T 12 END LOOP T

T T
TTTTTTTTTT I T T T T I T T T T I T T T I I I T T T T I T T T T T T T I I T T T T I I T T I I T T TT T I T T T I I T T T I T T ITI I T

Requi rements: 3.9.1

[[FECTEEETEEETErr e ey
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

III
Sl FI ED SHEET 21 ||
FETEECTEEETEEr et et et et e e

Appendix C: Sample PDL/81 Designs for Ada 107

CETEECTEEET et et et e e et e e et e e et e et e et e e et e e et e e et e et e et e et e et e et ey
|| AI'RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 22 |
II
CFG, | NC. Al RCRAFT MONI TOR SYSTEM PAGE 21

21 Jan 92 Task Bodi es

TASK BODY Ti me St anper

REF (CX = 1)
PAGE TTTTTTTTTTTTITTTITTITITTITTTITTITITTI I T T T I T T I T I T I T T I T T I T I T T I T T I T I T T I T TITTITITTITTITITTITITT

T T
T 1 LOOP T
T 2 | SELECT whi chever is ready T
5T 3 | | ACCEPT time stanp (type, first value, sencond val ue) T
T 4 | | build tinestanp record T
T 5 | | put the current tine in the record T
T 6 | | output the record to the recorder T
T 7 | OoR T
5T 8 | | ACCEPT change tinme (tine) T
T 9 | save the new tine T
T 10 | END SELECT T
T 11 END LOOP T
T T
TTTTTTTTTTTT T T T T T T I T I T I T I I T I T I T I T I T I I T T I I I I T I T I T T T T TTITTITTTTT

Requirenents: 3.9.1, 3.9.2

[[FECTEEETEEETErr ey
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

III
Sl FI ED SHEET 22 ||
FETEECTEEETEEr et et et et e e

108 PDL/81 Ada Design Language Reference Guide

I [FECEEEETEEETEr e e et e et ey
| RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 23 ||
I I I III

CFG, I NC Al RCRAFT MONI TOR SYSTEM PAGE 22
21 Jan 92

R S S S I
* *
* | NDEX TO FLOW SEGVENTS *
* *

R R R R EEEREEEEEEEEEEREEEEEEESE]

[[FECTEEETEEETErr ey
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

III
Sl FI ED SHEET 23 ||
FETEECTEEETEEr et et et et e e

Appendix C: Sample PDL/81 Designs for Ada 109

[T [[EETETTTL L1111 I
|| Al RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 24 ||
II
CFG, INC. Al RCRAFT MONI TOR SYSTEM PAGE 22.001
21 Jan 92 I NDEX TO FLOW SEGVENTS

I NDEX TO FLOW SEGMVENTS

PAGE LINE TYPE CX NAME AND REFERENCES

4 6 EP acknow edge al arm
12 Al arm Handl er
3
10 Command Execut or
12

12 TK 4 Al arm Handl er

4 7 EP change alarm state
12 Al arm Handl er
11
15 Monitor Sensor Status
3
16 Snoke Status Monitor
7 13

13 P 2 Change Al arns
12 Al arm Handl er
9 16

4 11 EP change di spl ay node
10 Conmmand Execut or
10
17 Display Handl er
12

4 12 EP change di splay state
13 Change Al arns
2 9
17 Display Handl er
3

5 10 EP change tine
8 Interrupt Actions
10
21 Time Stanper
8

[[FLCTELETEEETE e
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

|||
Sl FI ED SHEET 24 ||
FETEECTEEETEEr et et et et e e

110 PDL/81 Ada Design Language Reference Guide

[T [[EETETTTL L1111 I
|| Al RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 25 ||
II
CFG, INC. Al RCRAFT MONI TOR SYSTEM PAGE 22.002
21 Jan 92 I NDEX TO FLOW SEGVENTS

I NDEX TO FLOW SEGVENTS (conti nued)

PAGE LINE TYPE CX NAME AND REFERENCES

4 17 EP cl ear VDU di spl ay
13 Change Al arns
3 8
20 VDU Formatter
6
10 TK 2 Command Execut or
4 2 EP command keyst roke
10 Command Execut or
2
8 Interrupt Actions
2
4 18 EP di spl ay conmand on VDU
10 Conmmand Execut or
14
20 VDU Fornatter
9
17 TK 2 Display Handl er
4 19 EP display line on VDU
13 Change Al arns
5
19 Display One Line
9
20 VDU Formatter
3
19 P 1 Display One Line
17 Display Handl er
18
18 Rebuild Display
3
4 13 EP di spl ay sensor val ue

[[RN ANRR RNy
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

|||
Sl FI ED SHEET 25 ||
FETEECTEEETEEr et et et et e e

Appendix C: Sample PDL/81 Designs for Ada 111

[T [[EETETTTL L1111 I
|| Al RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 26 ||
II
CFG, INC. Al RCRAFT MONI TOR SYSTEM PAGE 22.003
21 Jan 92 I NDEX TO FLOW SEGVENTS

I NDEX TO FLOW SEGVENTS (conti nued)

PAGE LINE TYPE CX NAME AND REFERENCES

17 Display Handl er

16
14 Sensor Poll
10
8 P Interrupt Actions
15 P 1 DMonitor Sensor Status
14 Sensor Poll
12
5 5 EP noni t or snoke
8 Interrupt Actions
6
16 Snoke Status Monitor
2
18 P 1 Rebuild Display
17 Display Handl er
9 14
14 TK 2 Sensor Poll
16 TK 3 Snoke Status Monitor
5 9 EP time stanp
8 Interrupt Actions
3 7
14 Sensor Pol |
11
21 Time Stanper
3
21 TK 1 Tinme Stanper
20 TK 1 VDU Fornmatter

|||
Sl FI ED SHEET 26 ||
FETEECTEEETEEr et et et et e e

[[RN RNy
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

112 PDL/81 Ada Design Language Reference Guide

I [FECEELETEEETE e e e e et erey
| RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 27 ||
I I I III

CFG, I NC Al RCRAFT MONI TOR SYSTEM PAGE 23
21 Jan 92

R S S S S I R I
* *
* | NDEX TO REQUI REMENTS REFERENCES *
* *

LR R R R R EEEEEEEEEEEEREEEEEEEEEEEEEEEEES

[[FECTEEETEEETErr ey
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

III
Sl FI ED SHEET 27 ||
FETEECTEEETEEr et et et et e e

Appendix C: Sample PDL/81 Designs for Ada 113

[T [[EETETTTL L1111 I
|| Al RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 28 ||
II
CFG, INC. Al RCRAFT MONI TOR SYSTEM PAGE 23.001
21 Jan 92 I NDEX TO REQUI REVENTS REFERENCES

I NDEX TO REQUI REMENTS REFERENCES

3.2.1 5 Background Tasks
4 Foreground Tasks
3.2.2 14 Sensor Pol |
.2.2.3 12 Al arm Handl er
3.4 12 Al arm Handl er
13 Change Al arns
3.4. 4 14 Sensor Pol |
3.4.5 11 Conmmands
3.4.6 11 Conmands
3.7 8 Interrupt Actions
3.7.2 11 Conmands
3.7.8 12 Al arm Handl er
13 Change Al arns
3.8 5 Background Tasks
10 Conmand Execut or
4 Foreground Tasks
3.8.1 18 Rebuild Display
3.8.6 17 Display Handl er

15 Monitor Sensor Status
16 Snoke Status Monitor
3.8.7 17 Display Handl er
15 Monitor Sensor Status
16 Snoke Status Monitor
3.9 11 Conmands
3.9.1 19 Display One Line
21 Time Stanper
20 VDU Formatter
3.9.2 21 Time Stanper
3.12 17 Display Handl er
15 Monitor Sensor Status
16 Snoke Status Monitor

3.12.5 10 Conmand Execut or
3.12.12 18 Rebuild Display
3.14.2 8 Interrupt Actions

[[RN ANR RNy
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

|||
Sl FI ED SHEET 28 ||
FETEECTEEETEEr et et et et e e

114 PDL/81 Ada Design Language Reference Guide

I [FECEELETEEETE e e et e et ey
| RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 29 ||
I I I III

CFG, I NC Al RCRAFT MONI TOR SYSTEM PAGE 24
21 Jan 92

R S S o
* *
* CALLS-I N- CONTEXT LI ST *
* *

R R R EEEREEEEEEEEREEEEEEES]

[[FECTEEETEEETErr ey
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

III
Sl FI ED SHEET 29 ||
FETEECTEEETEEr et et et et e e

Appendix C: Sample PDL/81 Designs for Ada 115

[T [[EETETTTL L1111 I
|| Al RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 30 ||
II
CFG, INC. Al RCRAFT MONI TOR SYSTEM PAGE 24.001
21 Jan 92 CALLS- | N- CONTEXT LI ST

CALLS- I N- CONTEXT LI ST

F PAGE NAME / CALL

4 acknow edge al arm (acknow edge code)
10 acknow edge al arm (command code)
12 accept acknow edge al arm (acknow edge code)

4 change alarm state (al arm nunber, state)

12 accept change alarm state (al arm nunber, state)

15 change alarm state (al arm nunber for sensor, new state)
16 change al arm state (snpke al arm nunber, present)

16 change al arm state (snoke al arm nunber, absent)

13 Change Al arns
12 change al arns
12 change al arns

4 change di spl ay node (display node)
10 change di spl ay node (conmand code)
17 accept change di spl ay node (node)

4 change display state (display state)

13 change display state (suspend)

13 change di splay state (resune)

17 accept change display state (new state)

5 change tine (tine)
8 change tine (clock tinme)
21 accept change tinme (tinme)

4 cl ear VDU di spl ay
13 cl ear VDU displ ay
13 cl ear VDU di spl ay
20 accept clear VDU display

4 command keystroke (keystroke)
8 command keystroke (keystroke)
10 accept command keystroke (keystroke)

4 di spl ay command on VDU (nmessage)
10 di spl ay command on VDU (comand nane)
20 accept display conmand on VDU (nmessage)

[[RN ANR RNy
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

|||
Sl FI ED SHEET 30 ||
FETEECTEEETEEr et et et et e e

116 PDL/81 Ada Design Language Reference Guide

[T [[EETETTTL L1111 I
|| Al RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 31 ||
II
CFG, INC. Al RCRAFT MONI TOR SYSTEM PAGE 24.002
21 Jan 92 CALLS- | N- CONTEXT LI ST

CALLS-1 N- CONTEXT LI ST (conti nued)

F PAGE NAME / CALL

4 display line on VDU (nmessage)

13 display Iine on VDU (nessage for alarm

19 display line on VDU (line just constructed)
20 accept display line on VDU (nmessage)

19 Di spl ay One Line
17 di splay one line
18 di splay one line

4 display sensor value (sensor nunber, val ue)
14 di spl ay sensor val ue (sensor nunber, reading)
17 accept display sensor value (sensor nunber, sensor reading)

8 Interrupt Actions

15 Moni tor Sensor Status (sensor nunber, reading)
14 moni tor sensor status (sensor nunber, reading)

5 nmoni tor snoke (detector nunber, state)
8 moni t or snoke (nunber, state)
16 accept nonitor snoke (nunber, state)

18 Rebui | d Di spl ay
17 rebuil d display
17 rebuil d display

5 time stanp (type, first value, second val ue)

8 time stanp (key type, keystroke, null)

8 time stanmp (snoke type, state, nunber)

14 tine stanp (sensor type, sensor nunber, reading)

21 accept tine stanp (type, first value, sencond val ue)

[[RNy
Al RCRAFT MONI TOR SYSTEM UNCLAS:
[[[RNRRRRRRRRRRY

|||
Sl FI ED SHEET 31 ||
FETEECTEEETEEr et et et et e e

Appendix C: Sample PDL/81 Designs for Ada 117

II
|| AI'RCRAFT MONI TOR SYSTEM UNCLASSI FI ED EET 32 OF 32 ||
II
R S S S I
* *
* END OF DESI GN DOCUMENT *
* *
R R R R EEEREEEEEEEEEEREEEEEEESE]
STATI STI CS
Maxi mum conpl exity neasure (CX) is 4.
0 flow segnents had a conplexity greater than 6.
12 fl ow segnents.
2370 lines in definition file(s).
312 lines in source file(s).
686 dictionary entries allocated.
2573 string segnents allocated; 2412 in use.
73216 bytes of dynam c nmenory all ocated.
II
|| Al RCRAFT MONI TOR SYSTEM UNCLASSI FI ED SHEET 32 OF 32 ||
CEEEEEEETE e et e e e e e e e et e e e e e e e e e e e e e e e e et e e e e e e e e e e e e e e e e e e

118 PDL/81 Ada Design Language Reference Guide

C.2.2 Source Listing

The input lines which resulted in the design document of the preceding section
are:

% - -sada

% @#) $Header: ada2,v 2.0 88/03/27 16:09:18 shc Rel $
%Security UNCLASSI FI ED

%°r oj ect Al RCRAFT MONI TOR SYSTEM
9%itle Aircraft Monitor System
%itle A Sanple Design

9% tle Using

9%itle Ada Tasking Facilities
%No SBox

%NoTr ee

%NoDI ndex

%i c

% i ndex

%onpl exity

SKw |

%5 Task Definitions

% Task Connecti ons

command e R T T keyboard
execut or !
[snoke !
L R e e T > detector---->
P ! !
L > lights ! !
P ! v !
P alarm snmoke !
R > handler <------ <------ noni t or !
(. ! ! !
1l ! ! !
[! ! !
e > display <---------- SeNnsor----------------- >!
! ! ! pol |l <---- cl ock
! ! ! ! ! ! v
! ! ! ! ! ---->tinme
--> VDU <--<-------- ! sensors st anmper
formatter v !
! dials !
! \%
v recor der
screen

YSPEC For eground Tasks
%eq 3.2.1; 3.8
task conmand execut or
command keystroke (keystroke)
end task

task al arm handl er
acknow edge al arm (acknow edge code)
change al arm state (al arm nunber, state)
end task

task display handl er

change di spl ay node (display node)

change display state (display state)

di spl ay sensor val ue (sensor nunber, val ue)
end task

task VDU formatter
cl ear VDU di spl ay

Appendix C: Sample PDL/81 Designs for Ada 119

di spl ay command on VDU (nessage)
di splay line on VDU (nmessage)
end task
YSPEC Background Tasks
%eq 3.2.1;3.8
task sensor pol
end task

task snoke status monitor
moni t or snoke (detector number, state)
end task

task time stanper
time stanp (type, first value, second val ue)
change tine (tinme)

end task

%5 The Hardware Software |nterface

%F Har dware Operations

The aircraft nmonitor systemhas the foll owi ng hardware interfaces:

WL 20

%/ERB Sensors

Input fromthe sensors yields a value or no response.

%WERB Snoke Detectors

An interrupt gives the detector nunber and the new state.

Qutput to a smoke detector puts it through a test cycle.

%/ERB Li ghts

Qutput to a light change it to green or red.

%W/ERB Di al s

Qutput to a dial change the val ue displ ayed.

%/ERB Keyboar d

An interrupt gives the keystroke val ue.

%/ERB VDU Scr een

Qutput to the VDU changes the displ ay.

%/ERB C ock

An interrupt gives a new tine

%WERB Recor der

Qutput to the recorder is saved.

UE

The next page shows the interface between the hardware

interrupts and the preceding tasks.

9% Interrupt Actions

%eq 3.7;3.14.2

--keystroke interrupt

command keystroke (keystroke)

time stanp (key type, keystroke, null)

--snmoke interrupt

nmoni tor snoke (nunber, state)

time stanp (snoke type, state, nunber)

--clock interrupt

change time (clock tine)

%5 Task Bodi es

% ASKBODY Command Execut or

%eq 3.8;,3.12.5

| oop
accept command keystroke (keystroke)
determ ne command type and code from keystroke
case of command type
when snoke test
for all snmoke detectors |oop
output to detector (test command)
end | oop
when nodes
change di spl ay node (command code)

120 PDL/81 Ada Design Language Reference Guide

when acknow edgenent s
acknow edge al arm (command code)

end case

di spl ay command on VDU (comand nane)
end | oop
% Commands

%eq 3.4.5;3.4.6;3.7.2;3.9
test commands
snmoke test
acknow egenent s
engi ne pressure warni ng
engi ne tenperature warning
fuel |evel warning
di spl ay nodes
nost recent readi ngs
sensor histories
cal cul ated val ues
rates of change
Y%rASKBODY Al ar m Handl er
%eq 3.2.2.3;3.4;3.7.8

| oop
sel ect whichever is ready

accept acknow edge al arm (acknow edge code)

for all alarmflags |oop
if the flag belongs to the acknow edged cl ass

reset current alarmflag

endi f

end | oop

change al arns

or
accept change alarm state (al arm nunber, state)
case of state
when present
output to lights (alarm nunber, red)
set alarmflag (al arm nunber)
change al arns
when absent

output to lights (alarm nunber, green)

end case

end sel ect
end | oop

% Change Al arns
%eq 3.7.8;3.4

if there are any al arns set
change di splay state (suspend)
cl ear VDU di spl ay
for every alarm |l oop
display line on VDU (nessage for alarm

end | oop
el se

cl ear VDU di spl ay

change di splay state (resune)
end if

9% ASKBCODY Sensor Pol
%Weq 3.2.2;3.4.4

| oop
delay until the start of the second
for each sensor |oop

Appendix C: Sample PDL/81 Designs for Ada 121

read from sensor
if the sensor did not give a reading
set reading to default val ue
end if
convert readi ng to degrees
output value to circular display (sensor nunber, degrees)
di spl ay sensor val ue (sensor nunber, reading)
time stanp (sensor type, sensor nunber, reading)
nmoni tor sensor status (sensor nunber, reading)

end | oop

end | oop

% Monitor Sensor Status (sensor numnber, reading)

%eq 3.8

.6;3.8.7;3.12

determ ne when three in a row condition is net for this sensor
if the sensor changed its state
change al arm state (al arm nunber for sensor, new state)

end if

9%rASKBODY Snoke Status Monitor

% eq 3.8

| oop

end | oop

.6;3.8.7;,3.12

accept nonitor snoke (nunber, state)
if the state was snoke
set snoke for that detector nunber
if snoke state is not set
set snpke state
change al arm state (snoke al arm nunber, present)
end if
el se --nosnoke
set nosnoke for that detector nunber
if snoke state is set and nosnoke is set for all detectors
reset snoke state
change al arm state (snmoke al arm nunber, absent)
endi f
end if

Y%rASKBODY Di spl ay Handl er

%eq 3.8

| oop

.6;3.8.7;3.12

sel ect whi chever is ready
accept change display state (new state)
case of new state
when suspended
set suspend
when resumed
reset suspend
rebuil d display
end case
or
accept change di spl ay node (node)
save di splay node
rebuil d displ ay
or
accept display sensor value (sensor nunber, sensor reading)
enter reading in the sensor history buffer
di spl ay one line
end sel ect

end | oop

122 PDL/81 Ada Design Language Reference Guide

% Rebuil d Displ ay
%eq 3.8.1;3.12.12

choose a starting place in the sensor history buffer

while the current sensor entry is not the latest |oop
di splay one line

end | oop

% Di splay One Line
%eq 3.9.1

return if suspend is set
--build a line with the appropriate information
case of display node
when nost recent readi ngs
when sensor histories
when rates of change
when cal cul ated val ues
end case
display line on VDU (line just constructed)

% ASKBODY VDU For natter
%eq 3.9.1

| oop
sel ect whi chever is ready
accept display |line on VDU (nmessage)
wite nessage at the bottom of the screen

or
accept clear VDU display
clear the screen except for the command |ine
or
accept display conmand on VDU (nmessage)
wite nmessage on the command |ine
end sel ect

end | oop

% ASKBODY Ti me St anper
%eq 3.9.1;3.9.2

| oop
sel ect whichever is ready
accept time stanmp (type, first value, sencond val ue)
build timestanp record
put the current tine in the record
output the record to the recorder
or
accept change tine (tine)
save the new tine
end sel ect
end | oop

Index

% as command character 8
%BL command 15
%CDATA command 29
%CIC command 47
%CODE command 48
%CODEFILE command 48
%COMPLEXITY command 45
%CSTRING command 10
%D command 21

%DATA command 21
%DATACHAR command 20
%DATE command 42
%DCHAR command 20
%DINDEX command 50
%DSCHAR command 19
%EJECT command 18

%F command 28

%FILL command 16
%FUNCTION command 27
%G command 11

%GROUP command 11
%HEADING command 18
%INCLUDE command 8
%KWFONT command 32
%KWV command 47
%KWVC command 47
%LCASE command 31
%LE command 15, 16
%LNO command 44
%MAJORHEADING command 18
%MC command 44
%NEED command 17

%NL command 15
%NOCDATA command 29
%NOCIC command 47
%NOCOMPLEXITY command 46
%NODINDEX command 50
%NOFILL command 16

-123 -

%NOKWYV command 47
%NOLCASE command 31
%NOLNO command 44
%NORINDEX command 46
%NOSBOX command 43
%NOSDMODE command 22
%NOTREE command 49
%NOUSCORE command 32
%P command 27
%PACKAGE command 11
%PROCEDURE command 27
%PROJECT command 42
%PTITLE command 41

%R command 46

%REQ command 46
%RINDEX command 46
%SBOX command 43
%SCASE command 31
%SDMODE command 21
%SECSTYLE command 43
%SECURITY command 42
%SINDEX command 50, 51
%SPACE command 17
%SPEC command 23
%STREE command 49
%SUBHEADING command 18
%T command 13

%TAG command 39
%TASK command 28
%TASKBODY command 28
%TEXT command 13
%TEXTF command 14
%TF command 14

%TITLE command 41
%TREE command 49
%UCASE command 31
%USCORE command 31
%VERB command 15

124 PDL/81 Ada Design Language Reference Guide

%VL command 15 Calls-in-context list 47, 51
CASE construct 35
(‘as initial comment string 9 CASE keyword 35
CDATA command 29
* as comment command character 8 Change bars 44
Characters, special 8
- - as initial comment string 9 CIC command 47
Code and design in the same file 48
/ as continue character 7 CODE command 48
Code segments 48
2167 (DOD-STD) requirements track- CODEFILE command 48
ing 46 Command argument 8
Command character 8
#{ special sequence 8 Command lines 8
Command name 8
\ as escape character 7 Commands for complexity measure-
* as bullet character 8 ment 45
Commands, alphabetic list 57
_as initial data character 20 Commands, flow segment 27
Commands, general formatting 17
Abbreviated trees 49 Commands, heading 18
ABORT keyword 36 Commands, listing control 41
ABORT statement 36 Commands, segment 9
ACCEPT construct 35 Commands, vertical spacing 17
ACCEPT keyword 35 Comment command 8
Ada document style 3 Comment strings 9
Adding new keywords 30 Complex segment index 6
Advanced features 45 Complexity analysis 45
Alphabetic list of commands 57 COMPLEXITY command 45
Alternate source files 8 Complexity index 51
Argument counting 47 Complexity measurement commands
ASCII control codes 7 45
Automatic requirements tracking 46 Consistency checking 47, 51
Continuation of input lines 7
Banners, security 42 Continue character 7
BEGIN construct 35 CSTRING command 10
BEGIN keyword 35 Cyclomatic complexity 45
BF text function 38
BFU text function 38 D command 21
BFUC text function 38 Data base 3
BL command 15 Data character 20
Blank lines 13 DATA command 21
Blank lines in flow segments 28 Data definition 24
Blank, unpaddable 8 Data index 6
Blanks in flow segments 28 Data item declaration 19
Block names in flow segments 30 Data item declaration, explicit 21
Body of design 6, 9 Data item declaration, implicit 20
Body of flow segment 28 Data item index 50
Boxes, segment 9 Data item special characters 19
Boxes, special 43 Data items 19
Breaking a line 14 Data segments 6, 21
Bullet character 8, 14 DATACHAR command 20
Bullet lists 15 DATE command 42

Date of listing 42
Calls-in-context index 7 DATE text function 37

DCHAR command 20

Declaration mode, normal 21

Declaration mode, special 21

Declaration of data items 19

Defining data 24

Defining functions and procedures
23

Defining tasks 24

DELAY keyword 36

DELAY statement 36

Delimiting segments 9

Design and code in the same file 48

Design body 6, 9

Design date 42

Design format 5

Design table of contents 5

Design title 41

Design title page 5

DINDEX command 50

Display of segments 9

Display of statements 32

Document styles 3

DOD-STD 2167, requirements track-
ing 46

DSCHAR command 19

EJECT command 18

ELSE keyword 32

ELSEIF keyword 32

Empty segments 9

END CASE keyword 35

END IF keyword 32

END keyword 35

END LOOP keyword 33

END SELECT keyword 36
ENDCASE keyword 35

ENDIF keyword 32
ENDLOOP keyword 33
ENDSELECT keyword 36
Enhancement of flow figures 47
Enhancement of keywords 31
Error messages 53

Error messages, non-terminal 53
Error messages, terminal 54
Escape character 7
EXCEPTION construct 36
EXCEPTION keyword 36
EXIT keyword 34

EXIT statement 34

Expansion of tabs 7

Explicit data item declaration 21

F command 28
Fatal error messages 54
FILL command 16

Index 125

Final page of design 7

Flow figure enhancement 47

Flow segment body 28

Flow segment commands 27

Flow segment index 6, 50

Flow segment references 29

Flow segment statements 28

Flow segments 6, 27

Flow segments, special statements
30

FOR construct 33

FOR keyword 33

Format of a design 5

Format of input 7

Formatted text segments 14

Formatting mode, initial 16

Formatting, general commands 17

Front matter 5

FUNCTION command 27

Function definition 23

Function segments 6, 27

FUNCTION statement 23

Functions, text 37

G command 11

General formatting commands 17
General information 5

GetCode number register 48
GOTO keyword 36

GOTO statement 36

GROUP command 11

Groups 11

HEADING command 18
Heading commands 18

IF construct 32

IF keyword 32

Implicit data item declaration 20
INCLUDE command 8

Including alternate source 8
Index of requirements 51

Index to data items 50

Index to flow segments 50

Index to requirements 46

Index, calls-in-context 7

Index, data 6

Index, flow segment 6

Index, overly complex segments 6
Index, requirements 6
Information, general 5

Initial formatting mode 16

Input format 7

Input line continuation 7

Input tab stops 7

126 PDL/81 Ada Design Language Reference Guide

Introduction 1
Invocation of PDL/81 7

Keyword enhancement 31
Keywords 30

Keywords, adding 30
KWFONT command 32
KWV command 47
KWVC command 47

Labels in flow segments 29
LCASE command 31

LE command 15, 16

Line breaks 14

Line numbers 44

Listing control commands 41
Listing date 42

Lists 14

Lists, bullet 15

Lists, numbered 15

Lists, verb 15

LNO command 44

LOOP construct 33

LOOP keyword 33

MAJORHEADING command 18
MC command 44

McCabe, Thomas J. 45
Messages, error 53

Mode, normal declaration 21
Mode, special declaration 21

NEED command 17

NL command 15

NOCDATA command 29
NOCIC command 47
NOCOMPLEXITY command 46
NODINDEX command 50
NOFILL command 16

NOKWYV command 47
NOLCASE command 31
NOLNO command 44
Non-terminal error messages 53
NORINDEX command 46
Normal declaration mode 21
NOSBOX command 43
NOSDMODE command 22
NOTREE command 49
NOUSCORE 32

Null segments 9

Numbered lists 15

Operation, overall 7
OR keyword 36
Other publications 3

Overall operation 7
Overly complex segments 51

P command 27

Packages 11

Page head definition 41
PDL/74 1,2

Primary keywords 30
Printers, serial 43
PROCEDURE command 27
Procedure definition 23
Procedure segments 6, 27
PROCEDURE statement 23
Processor reports 49
PROJECT command 42
PTITLE command 41
Publications, related 3

R command 46

RAISE keyword 36

RAISE statement 36
RECORD construct 24
Recursive references 49

REF text function 39
Reference recognition 29
Reference tree report 6
References and tags 38
References to flow segments 29
Related publications 3
Report, reference tree 6
Reports 6, 49

REQ command 46
Requirements index 6, 46, 51
Requirements tracking 46
RETURN keyword 35
RETURN statement 35
RINDEX command 46

Root segment 49

Running page head definition 41

Sample design 3,5
Sample designs 61
SBOX command 43
SCASE command 31
SDMODE command 21
Secondary keywords 30
SECSTYLE command 43
Security banners 42
Security banners, format 43
SECURITY command 42
Segment boxes 9
Segment commands 9
Segment delimiting 9
Segment display 9
Segment index 50

Segment reference trees 49

Segments, data 6, 21

Segments, flow 6, 27

Segments, function 6, 27

Segments, procedure 6, 27

Segments, specification 6, 23

Segments, task body 27

Segments, text 6, 13

SELECT construct 36

SELECT keyword 36

Serial printers 43

Sheet numbers 42

Short boxes 43

Short trees 49

ShowCode number register 48

SINDEX command 50, 51

SPACE command 17

Space, unpaddable 8

SPEC command 23

Special boxes 43

Special characters 8

Special characters in data items 19

Special declaration mode 21

Special statements in flow segments
30

Special trees 49

Specification segments 6, 23

Standard error file 53

Statement display 32

Statements in flow segments 28

Statistics 7

STREE command 49

Strings, comment 9

Style of design 3

SUBHEADING command 18

T command 13

Tab expansion 7

Tab stops, input 7

Table of contents 5

TAG command 39

Tags and references 38
Task body segments 27
TASK command 28

TASK construct 24

Task definitions 24
TASKBODY command 28
Terminal error messages 54
TERMINATE keyword 36
TERMINATE statement 36
TEXT command 13

Text functions 37

Text references 38

Text segments 6, 13

Text segments, formatted 14

Index 127

Text segments, unformatted 13
TEXTF command 14

TF command 14

TITLE command 41

Title of the design 41

Title page 5

Tracking, requirements 46
TREE command 49

Trees 6

Trees, segment reference 49

UC text function 38

UCASE command 31
Underscoring keywords 32
Underscoring of text 38
Unformatted text segments 13
Unpaddable space 8

US text function 38

USCORE command 31

VERB command 15

Verb lists 15

Vertical spacing commands 17
VL command 15

WHEN keyword 35, 36
WHILE construct 33
WHILE keyword 33

White space 13

White space in commands 8

	Introduction
	General Information
	Packages
	Text Segments
	General Formatting Commands
	Data Item Declaration
	Specification Segments
	Flow Segments
	Text Functions
	Listing Control Commands
	Advanced Features
	Processor Reports
	Appendices
	Error Messages
	List of Commands
	Sample PDL/81 Designs for Ada

	Index

